Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice deciphers optical spectra of carbon nanotubes


Study opens door for faster, simpler methods of measuring carbon nanotubes

This three-dimensional plot of light-emission intensity of carbon nanotubes shows a peak for each "species" of light-emitting nanotube, indicating that each "species" has a unique optical signature. Variations in signature are due to slight differences in nanotube structure and diameter. Emission intensity is plotted as a function of excitation wavelength and emission wavelength

Building upon this summer’s groundbreaking finding that carbon nanotubes are fluorescent, chemists at Rice University have precisely identified the optical signatures of 33 "species" of nanotubes, establishing a new methodology for assaying nanotubes that is simpler and faster than existing methods.

In research published this week by Science magazine, a spectroscopy research team led by Rice Chemistry Professor R. Bruce Weisman detailed the wavelengths of light that are absorbed and emitted by each type of light-emitting nanotube. The findings hold great promise for chemists, physicists and materials scientists studying nanotubes, because it otherwise takes many hours of tedious testing for researchers to assay a single sample of nanotubes, and optical tests could be much faster and simpler.

"Optical nanotube spectroscopy is an important enabling tool for nanotechnology research, because it reveals the composition of nanotube samples through simple measurements," said Weisman. "Chemists and biochemists commonly use optical instruments that can characterize samples within a matter of seconds. With refinement, similar methodologies can probably be applied to nanotube analysis."

Carbon nanotubes are cylinders of carbon atoms that measure about one nanometer, or one-billionth of a meter, in diameter. That’s about 50,000 times smaller than a human hair. Because of their astounding physical and electrical properties, scientists have envisioned using nanotubes in everything from the skins of spacecraft to electronic wiring that’s 100 times smaller than the circuits in today’s most advanced silicon microchips.

The ability to sort nanotubes must be overcome if they are to be transformed from a laboratory oddity to a marketable commodity, but sorting isn’t feasible until chemists have a practical way to inspect what they’re sorting. Sorting is an issue because nanotubes aren’t identical. There are actually three families of carbon nanotubes, and cousins and siblings in these families have slightly different diameters and physical structures. While almost imperceptible, these slight variations give rise to drastically different properties: about one-third of nanotubes are metals for example, and the others are semiconductors. Since every method of preparing nanotubes yields dozens of varieties, researchers have to sort and classify the types of tubes they are most interested in studying.

This summer, Weisman’s group and the carbon nanotube research team of Rice’s Richard Smalley reported that all semiconducting varieties of nanotubes fluoresce. Fluorescence occurs when a substance absorbs one wavelength of light and emits a different wavelength in response.

Once fluorescence of nanotubes was confirmed, researchers in Weisman’s and Smalley’s research groups began investigating the spectral properties of various kinds and classes of nanotubes. The research is detailed in a paper titled "Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes," published online today by Science magazine.

In addition to applied researchers, theoretical scientists will also use the spectral research to help refine models that predict the expected physical, mechanical, structural and electrical properties of nanotubes. In several instances, Weisman’s group reported experimental data that differed substantially from what theorists have predicted.

The Rice research team also included Sergei M. Bachilo, Michael S. Strano, Carter Kittrell, Robert H. Hauge and Smalley. The research was funded by the National Science Foundation and the Robert A. Welch Foundation.

Jade Boyd | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Generation of a Stable Biradical

22.03.2018 | Life Sciences

Scientists develop a room temperature maser to amplify weak signals

22.03.2018 | Life Sciences

Jacobs University supports new mapping of Mars, Mercury and the Moon

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>