Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice deciphers optical spectra of carbon nanotubes

29.11.2002


Study opens door for faster, simpler methods of measuring carbon nanotubes


This three-dimensional plot of light-emission intensity of carbon nanotubes shows a peak for each "species" of light-emitting nanotube, indicating that each "species" has a unique optical signature. Variations in signature are due to slight differences in nanotube structure and diameter. Emission intensity is plotted as a function of excitation wavelength and emission wavelength



Building upon this summer’s groundbreaking finding that carbon nanotubes are fluorescent, chemists at Rice University have precisely identified the optical signatures of 33 "species" of nanotubes, establishing a new methodology for assaying nanotubes that is simpler and faster than existing methods.

In research published this week by Science magazine, a spectroscopy research team led by Rice Chemistry Professor R. Bruce Weisman detailed the wavelengths of light that are absorbed and emitted by each type of light-emitting nanotube. The findings hold great promise for chemists, physicists and materials scientists studying nanotubes, because it otherwise takes many hours of tedious testing for researchers to assay a single sample of nanotubes, and optical tests could be much faster and simpler.


"Optical nanotube spectroscopy is an important enabling tool for nanotechnology research, because it reveals the composition of nanotube samples through simple measurements," said Weisman. "Chemists and biochemists commonly use optical instruments that can characterize samples within a matter of seconds. With refinement, similar methodologies can probably be applied to nanotube analysis."

Carbon nanotubes are cylinders of carbon atoms that measure about one nanometer, or one-billionth of a meter, in diameter. That’s about 50,000 times smaller than a human hair. Because of their astounding physical and electrical properties, scientists have envisioned using nanotubes in everything from the skins of spacecraft to electronic wiring that’s 100 times smaller than the circuits in today’s most advanced silicon microchips.

The ability to sort nanotubes must be overcome if they are to be transformed from a laboratory oddity to a marketable commodity, but sorting isn’t feasible until chemists have a practical way to inspect what they’re sorting. Sorting is an issue because nanotubes aren’t identical. There are actually three families of carbon nanotubes, and cousins and siblings in these families have slightly different diameters and physical structures. While almost imperceptible, these slight variations give rise to drastically different properties: about one-third of nanotubes are metals for example, and the others are semiconductors. Since every method of preparing nanotubes yields dozens of varieties, researchers have to sort and classify the types of tubes they are most interested in studying.

This summer, Weisman’s group and the carbon nanotube research team of Rice’s Richard Smalley reported that all semiconducting varieties of nanotubes fluoresce. Fluorescence occurs when a substance absorbs one wavelength of light and emits a different wavelength in response.

Once fluorescence of nanotubes was confirmed, researchers in Weisman’s and Smalley’s research groups began investigating the spectral properties of various kinds and classes of nanotubes. The research is detailed in a paper titled "Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes," published online today by Science magazine.

In addition to applied researchers, theoretical scientists will also use the spectral research to help refine models that predict the expected physical, mechanical, structural and electrical properties of nanotubes. In several instances, Weisman’s group reported experimental data that differed substantially from what theorists have predicted.


###
The Rice research team also included Sergei M. Bachilo, Michael S. Strano, Carter Kittrell, Robert H. Hauge and Smalley. The research was funded by the National Science Foundation and the Robert A. Welch Foundation.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>