Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thoughts on evolution arise from UH yeast study

29.11.2002


Novel Method of Creating New Species Observed in Laboratory Yeast



The sex life of yeast has University of Houston biologists fermenting new ideas about evolution and beer.

Researchers studying yeast reproductive habits have for the first time observed a rapid method for the creation of new species, shedding light on the way organisms evolve and suggesting possible ways to improve yeast biotechnology and fermentation processes used in beer and wine-making.


“Most models of speciation require gradual change over a very long period of time, and geographic or ecological isolation for a new species to arise,” says University of Houston biologist Michael Travisano. “Our study suggests that mating two separate species to produce hybrids can result in a new species readily and relatively quickly, at least in yeast, but possibly in other organisms as well.”

Travisano, an assistant professor in the UH Department of Biology and Biochemistry, says the findings extend the range of known mechanisms that cause reproductive isolation. The study appears in the Nov. 29 issue of the journal Science.

Duncan Greig, a postdoctoral researcher in Travisano’s lab, conducted experiments that put two different species of yeast together, Saccharomyces cerevisiae and Saccharomyces paradoxus. One way that yeast, a one-celled organism, can replicate is by producing spores. When spores from these two species joined, they produced hybrid offspring, similar to crossing a female horse with a male donkey and getting a mule.

Unlike mules, which are sterile, a few of the yeast hybrids were fertile. Those hybrids produced viable offspring when they were allowed to “autofertilize,” which means an individual’s spores fertilized themselves to produce an offspring without involving another yeast cell.

However, the hybrids did not produce viable offspring when mated back to their parent species.
“Other labs have generated hybrids such as these before, but we went a step further and crossed the fertile ones back with their parents,” Travisano says. While there are various definitions of a species, Travisano says individuals that are fertile with themselves and isolated from their parents certainly qualify as a new species. He estimates the experiment took about a month to generate the new yeast species.

Understanding why some hybrids are fertile and others are not is a key question, according to Greig and Travisano, and may have implications for the evolution of species besides yeast.

“What are the genetic or molecular mechanisms that make some hybrids sterile and others fertile and able to propagate as a new species? While our work was done with yeast, presumably the interactions that prevent or encourage speciation occur in other organisms as well,” Travisano says.

The method by which the hybrids replicated and formed a new species is called homoploid hybrid speciation, in which the new hybrid species contain the same total amount of genetic material as the parental species. It is not found in any animal species and only very rarely among plants, Travisano says.

“We think it may be happening in nature, but this is the first time this mode of speciation has been observed in a microorganism such as yeast,” he says. “In terms of how we typically think of speciation, this method is pretty rare, which makes it kind of a surprise how easy it was to get it to work.” This method is in contrast with polyploid hybrid speciation, which occurs readily in plants and involves an increase of two or more times the genetic material in the new hybrid species than in the parental species, Travisano says.

He adds that the yeast’s ability to speciate so quickly in the lab is due in part to its ability to autofertilize.
“Autofertilization is thought to be relatively common in wild yeast, but the natural history of yeast is not very well understood,” he says.

One application of the research may be to benefit industries that utilize yeast in fermentation.

“If we put these hybrid individuals in various environments, we’d like to see whether they do better in some environments than their parental species,” Travisano says. For example, one parent species thrives in cold temperatures and the other parent does well in the heat – what kind of environment might the hybrid prefer?
“Presumably you might be able to optimize wine or beer-making by genetically engineering a yeast species specific to your needs,” Travisano says. “If you’re interested in yeast biotechnology, studies such as this could tell you something about the nature of your yeast and how to engineer it.”

Travisano’s and Greig’s research was funded by the Wellcome Trust and was done in collaboration with Edward J. Louis and Rhona H. Borts at the University of Leicester.


Amanda Siegfried | EurekAlert!
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>