Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thoughts on evolution arise from UH yeast study

29.11.2002


Novel Method of Creating New Species Observed in Laboratory Yeast



The sex life of yeast has University of Houston biologists fermenting new ideas about evolution and beer.

Researchers studying yeast reproductive habits have for the first time observed a rapid method for the creation of new species, shedding light on the way organisms evolve and suggesting possible ways to improve yeast biotechnology and fermentation processes used in beer and wine-making.


“Most models of speciation require gradual change over a very long period of time, and geographic or ecological isolation for a new species to arise,” says University of Houston biologist Michael Travisano. “Our study suggests that mating two separate species to produce hybrids can result in a new species readily and relatively quickly, at least in yeast, but possibly in other organisms as well.”

Travisano, an assistant professor in the UH Department of Biology and Biochemistry, says the findings extend the range of known mechanisms that cause reproductive isolation. The study appears in the Nov. 29 issue of the journal Science.

Duncan Greig, a postdoctoral researcher in Travisano’s lab, conducted experiments that put two different species of yeast together, Saccharomyces cerevisiae and Saccharomyces paradoxus. One way that yeast, a one-celled organism, can replicate is by producing spores. When spores from these two species joined, they produced hybrid offspring, similar to crossing a female horse with a male donkey and getting a mule.

Unlike mules, which are sterile, a few of the yeast hybrids were fertile. Those hybrids produced viable offspring when they were allowed to “autofertilize,” which means an individual’s spores fertilized themselves to produce an offspring without involving another yeast cell.

However, the hybrids did not produce viable offspring when mated back to their parent species.
“Other labs have generated hybrids such as these before, but we went a step further and crossed the fertile ones back with their parents,” Travisano says. While there are various definitions of a species, Travisano says individuals that are fertile with themselves and isolated from their parents certainly qualify as a new species. He estimates the experiment took about a month to generate the new yeast species.

Understanding why some hybrids are fertile and others are not is a key question, according to Greig and Travisano, and may have implications for the evolution of species besides yeast.

“What are the genetic or molecular mechanisms that make some hybrids sterile and others fertile and able to propagate as a new species? While our work was done with yeast, presumably the interactions that prevent or encourage speciation occur in other organisms as well,” Travisano says.

The method by which the hybrids replicated and formed a new species is called homoploid hybrid speciation, in which the new hybrid species contain the same total amount of genetic material as the parental species. It is not found in any animal species and only very rarely among plants, Travisano says.

“We think it may be happening in nature, but this is the first time this mode of speciation has been observed in a microorganism such as yeast,” he says. “In terms of how we typically think of speciation, this method is pretty rare, which makes it kind of a surprise how easy it was to get it to work.” This method is in contrast with polyploid hybrid speciation, which occurs readily in plants and involves an increase of two or more times the genetic material in the new hybrid species than in the parental species, Travisano says.

He adds that the yeast’s ability to speciate so quickly in the lab is due in part to its ability to autofertilize.
“Autofertilization is thought to be relatively common in wild yeast, but the natural history of yeast is not very well understood,” he says.

One application of the research may be to benefit industries that utilize yeast in fermentation.

“If we put these hybrid individuals in various environments, we’d like to see whether they do better in some environments than their parental species,” Travisano says. For example, one parent species thrives in cold temperatures and the other parent does well in the heat – what kind of environment might the hybrid prefer?
“Presumably you might be able to optimize wine or beer-making by genetically engineering a yeast species specific to your needs,” Travisano says. “If you’re interested in yeast biotechnology, studies such as this could tell you something about the nature of your yeast and how to engineer it.”

Travisano’s and Greig’s research was funded by the Wellcome Trust and was done in collaboration with Edward J. Louis and Rhona H. Borts at the University of Leicester.


Amanda Siegfried | EurekAlert!
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>