Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thoughts on evolution arise from UH yeast study

29.11.2002


Novel Method of Creating New Species Observed in Laboratory Yeast



The sex life of yeast has University of Houston biologists fermenting new ideas about evolution and beer.

Researchers studying yeast reproductive habits have for the first time observed a rapid method for the creation of new species, shedding light on the way organisms evolve and suggesting possible ways to improve yeast biotechnology and fermentation processes used in beer and wine-making.


“Most models of speciation require gradual change over a very long period of time, and geographic or ecological isolation for a new species to arise,” says University of Houston biologist Michael Travisano. “Our study suggests that mating two separate species to produce hybrids can result in a new species readily and relatively quickly, at least in yeast, but possibly in other organisms as well.”

Travisano, an assistant professor in the UH Department of Biology and Biochemistry, says the findings extend the range of known mechanisms that cause reproductive isolation. The study appears in the Nov. 29 issue of the journal Science.

Duncan Greig, a postdoctoral researcher in Travisano’s lab, conducted experiments that put two different species of yeast together, Saccharomyces cerevisiae and Saccharomyces paradoxus. One way that yeast, a one-celled organism, can replicate is by producing spores. When spores from these two species joined, they produced hybrid offspring, similar to crossing a female horse with a male donkey and getting a mule.

Unlike mules, which are sterile, a few of the yeast hybrids were fertile. Those hybrids produced viable offspring when they were allowed to “autofertilize,” which means an individual’s spores fertilized themselves to produce an offspring without involving another yeast cell.

However, the hybrids did not produce viable offspring when mated back to their parent species.
“Other labs have generated hybrids such as these before, but we went a step further and crossed the fertile ones back with their parents,” Travisano says. While there are various definitions of a species, Travisano says individuals that are fertile with themselves and isolated from their parents certainly qualify as a new species. He estimates the experiment took about a month to generate the new yeast species.

Understanding why some hybrids are fertile and others are not is a key question, according to Greig and Travisano, and may have implications for the evolution of species besides yeast.

“What are the genetic or molecular mechanisms that make some hybrids sterile and others fertile and able to propagate as a new species? While our work was done with yeast, presumably the interactions that prevent or encourage speciation occur in other organisms as well,” Travisano says.

The method by which the hybrids replicated and formed a new species is called homoploid hybrid speciation, in which the new hybrid species contain the same total amount of genetic material as the parental species. It is not found in any animal species and only very rarely among plants, Travisano says.

“We think it may be happening in nature, but this is the first time this mode of speciation has been observed in a microorganism such as yeast,” he says. “In terms of how we typically think of speciation, this method is pretty rare, which makes it kind of a surprise how easy it was to get it to work.” This method is in contrast with polyploid hybrid speciation, which occurs readily in plants and involves an increase of two or more times the genetic material in the new hybrid species than in the parental species, Travisano says.

He adds that the yeast’s ability to speciate so quickly in the lab is due in part to its ability to autofertilize.
“Autofertilization is thought to be relatively common in wild yeast, but the natural history of yeast is not very well understood,” he says.

One application of the research may be to benefit industries that utilize yeast in fermentation.

“If we put these hybrid individuals in various environments, we’d like to see whether they do better in some environments than their parental species,” Travisano says. For example, one parent species thrives in cold temperatures and the other parent does well in the heat – what kind of environment might the hybrid prefer?
“Presumably you might be able to optimize wine or beer-making by genetically engineering a yeast species specific to your needs,” Travisano says. “If you’re interested in yeast biotechnology, studies such as this could tell you something about the nature of your yeast and how to engineer it.”

Travisano’s and Greig’s research was funded by the Wellcome Trust and was done in collaboration with Edward J. Louis and Rhona H. Borts at the University of Leicester.


Amanda Siegfried | EurekAlert!
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

The first genome of a coral reef fish

29.09.2016 | Life Sciences

Gentle sensors for diagnosing brain disorders

29.09.2016 | Medical Engineering

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>