Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create DNA ’nanocircles’ to probe the mystery of aging in human cells

20.11.2002


A new form of nanotechnology developed at Stanford University may lead to a better understanding of the life and death of human cells.



Writing in the Nov. 18 Proceedings of the National Academy of Sciences (PNAS), Stanford researchers described how newly created circles of synthetic DNA - called "nanocircles" - could help researchers learn more about the aging process in cells.

"In the long run, we have this dream of making laboratory cells live longer," said Eric Kool, a professor of chemistry at Stanford and co-author of the PNAS study. "We thought of this pie-in-the-sky idea several years ago, and we’ve been working toward it ever since."


All cells carry chromosomes - large molecules of double-stranded DNA that are capped off by single-strand sequences called telomeres. In their study, the research team successfully used synthetic nanocircles to lengthen telomeres in the test tube.

"The telomere is the time clock that tells a cell how long it can divide before it dies," Kool noted. "The consensus is that the length of the telomere helps determine how long a cell population will live, so if you can make telomeres longer, you could have some real biological effect on the lifespan of the cell. These results suggest the possibility that, one day, we may be able to make cells live longer by this approach."

Cellular death

Human telomeres consist of chemical clusters called "base pairs" that are strung together in a specific sequence known by the initials TTAGGG. This sequence is repeated several thousand times along the length of the telomere. But each time a cell divides during its normal lifecycle, its telomeres are shortened by about 100 base pairs until all cell division finally comes to a halt.

"Suddenly there’s a switch in the cell that says, ’It’s time to stop dividing,’" Kool explained. "It’s still not completely clear how that works, but it is clear that once telomeres reach the critically short length of 3,000 to 5,000 base pairs, they enter senescence and die."

In nature, a chromosome can be lengthened by the enzyme telomerase, which adds new TTAGGG sequences to the end of the telomere. But because telomerase is difficult to produce in the lab, Kool and his co-workers decided to create synthetic nanocircles that mimic the natural enzyme.

Each nanocircle consists of DNA base pairs arranged in a sequence that is complementary to the telomere. When placed in a test tube, the nanocircles automatically lengthen the telomeres by repeatedly adding new TTAGGG sequences.

"Nanocircles are so simple they’re amazing," Kool observed. "Each nanocircle acts like a template that says, ’Copy more of that sequence.’ In the test tube, we start with very short telomeres and end up with long ones that are easy to see under the microscope with fluorescent labeling. This suggests the possibility that one day we may be able to make cells live indefinitely and divide indefinitely, so they essentially become refreshed, as if they were younger."

Aging and cancer

Kool pointed out that most cells have a limited lifespan, which is part of the normal aging process.

"The link between organism aging and cell aging is less clear, but there very likely is a link," he noted. "On the other hand, it is pretty clear that telomere length governs how long an individual cell lives."

In some diseases, such as premature aging (progeria) and cirrhosis, patients have cells with unusually short telomeres, Kool said. Cancer is another disease closely associated with telomere size.

"In order for a cell to become cancerous, one of the things it has to do is switch on the telomerase gene which makes the telomeres longer," he said. "The body has decided that the best way to keep an organism alive is to keep telomerase turned off, because otherwise you can get mutations and cancer too easily."

Because researchers need to study cells that live a long time, many labs rely on tumor-derived cells, which continuously divide and therefore are immortal. Kool predicted that nanocircle technology could one day provide an alternative method that would allow researchers to use healthy cells in their experiments instead of cancerous ones.

"If you could study normal cells in a convenient way, it would be a major boon for biomedical research," he noted. "You could go to the store and buy liver cells, pancreatic cells and skin cells and have them live indefinitely - if you could find a way to refresh their telomeres every couple of weeks or so. That has been our dream for this project: to find a way to refresh telomeres but without permanently turning on telomerase, which may increase the likelihood of cancer."

Transplantation medicine
Kool thinks nanocircle technology may prove useful in transplantation science and organogenesis.

"Perhaps some day researchers could grow new livers, new pancreas cells, new skin for burn victims," he said. "Instead of waiting for new donors to die, we could grow normal tissue in the lab. Maybe we wouldn’t need stem cells; we wouldn’t need to get into the controversy of where stem cells come from, if you could just take normal cells and grow them."

Kool and his colleagues also have begun research into the structure of single-strand telomeres, which are strikingly different from double-stranded DNA found in the rest of the chromosome.


The lead author of the PNAS study is Ulf M. Lindstrom, a former postdoctoral fellow in the Stanford Department of Chemistry now at Lund University in Sweden. Other Stanford co-authors are former Stanford undergraduate Ravi A. Chandrasekaran, now at the University of California-Berkeley; Stanford graduate students Lucian Orbai, Sandra A. Helquist and Gregory P. Miller; and Emin Oroudjev and Helen G. Hansma of the University of California-Santa Barbara Department of Physics. The study was supported by grants from the National Science Foundation and the Swedish Research Council.

COMMENT: Eric Kool, Chemistry: (650) 724-4741, kool@stanford.edu

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://news.stanford.edu
http://www.stanford.edu/dept/news/html/releases.html

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>