Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers create DNA ’nanocircles’ to probe the mystery of aging in human cells


A new form of nanotechnology developed at Stanford University may lead to a better understanding of the life and death of human cells.

Writing in the Nov. 18 Proceedings of the National Academy of Sciences (PNAS), Stanford researchers described how newly created circles of synthetic DNA - called "nanocircles" - could help researchers learn more about the aging process in cells.

"In the long run, we have this dream of making laboratory cells live longer," said Eric Kool, a professor of chemistry at Stanford and co-author of the PNAS study. "We thought of this pie-in-the-sky idea several years ago, and we’ve been working toward it ever since."

All cells carry chromosomes - large molecules of double-stranded DNA that are capped off by single-strand sequences called telomeres. In their study, the research team successfully used synthetic nanocircles to lengthen telomeres in the test tube.

"The telomere is the time clock that tells a cell how long it can divide before it dies," Kool noted. "The consensus is that the length of the telomere helps determine how long a cell population will live, so if you can make telomeres longer, you could have some real biological effect on the lifespan of the cell. These results suggest the possibility that, one day, we may be able to make cells live longer by this approach."

Cellular death

Human telomeres consist of chemical clusters called "base pairs" that are strung together in a specific sequence known by the initials TTAGGG. This sequence is repeated several thousand times along the length of the telomere. But each time a cell divides during its normal lifecycle, its telomeres are shortened by about 100 base pairs until all cell division finally comes to a halt.

"Suddenly there’s a switch in the cell that says, ’It’s time to stop dividing,’" Kool explained. "It’s still not completely clear how that works, but it is clear that once telomeres reach the critically short length of 3,000 to 5,000 base pairs, they enter senescence and die."

In nature, a chromosome can be lengthened by the enzyme telomerase, which adds new TTAGGG sequences to the end of the telomere. But because telomerase is difficult to produce in the lab, Kool and his co-workers decided to create synthetic nanocircles that mimic the natural enzyme.

Each nanocircle consists of DNA base pairs arranged in a sequence that is complementary to the telomere. When placed in a test tube, the nanocircles automatically lengthen the telomeres by repeatedly adding new TTAGGG sequences.

"Nanocircles are so simple they’re amazing," Kool observed. "Each nanocircle acts like a template that says, ’Copy more of that sequence.’ In the test tube, we start with very short telomeres and end up with long ones that are easy to see under the microscope with fluorescent labeling. This suggests the possibility that one day we may be able to make cells live indefinitely and divide indefinitely, so they essentially become refreshed, as if they were younger."

Aging and cancer

Kool pointed out that most cells have a limited lifespan, which is part of the normal aging process.

"The link between organism aging and cell aging is less clear, but there very likely is a link," he noted. "On the other hand, it is pretty clear that telomere length governs how long an individual cell lives."

In some diseases, such as premature aging (progeria) and cirrhosis, patients have cells with unusually short telomeres, Kool said. Cancer is another disease closely associated with telomere size.

"In order for a cell to become cancerous, one of the things it has to do is switch on the telomerase gene which makes the telomeres longer," he said. "The body has decided that the best way to keep an organism alive is to keep telomerase turned off, because otherwise you can get mutations and cancer too easily."

Because researchers need to study cells that live a long time, many labs rely on tumor-derived cells, which continuously divide and therefore are immortal. Kool predicted that nanocircle technology could one day provide an alternative method that would allow researchers to use healthy cells in their experiments instead of cancerous ones.

"If you could study normal cells in a convenient way, it would be a major boon for biomedical research," he noted. "You could go to the store and buy liver cells, pancreatic cells and skin cells and have them live indefinitely - if you could find a way to refresh their telomeres every couple of weeks or so. That has been our dream for this project: to find a way to refresh telomeres but without permanently turning on telomerase, which may increase the likelihood of cancer."

Transplantation medicine
Kool thinks nanocircle technology may prove useful in transplantation science and organogenesis.

"Perhaps some day researchers could grow new livers, new pancreas cells, new skin for burn victims," he said. "Instead of waiting for new donors to die, we could grow normal tissue in the lab. Maybe we wouldn’t need stem cells; we wouldn’t need to get into the controversy of where stem cells come from, if you could just take normal cells and grow them."

Kool and his colleagues also have begun research into the structure of single-strand telomeres, which are strikingly different from double-stranded DNA found in the rest of the chromosome.

The lead author of the PNAS study is Ulf M. Lindstrom, a former postdoctoral fellow in the Stanford Department of Chemistry now at Lund University in Sweden. Other Stanford co-authors are former Stanford undergraduate Ravi A. Chandrasekaran, now at the University of California-Berkeley; Stanford graduate students Lucian Orbai, Sandra A. Helquist and Gregory P. Miller; and Emin Oroudjev and Helen G. Hansma of the University of California-Santa Barbara Department of Physics. The study was supported by grants from the National Science Foundation and the Swedish Research Council.

COMMENT: Eric Kool, Chemistry: (650) 724-4741,

Mark Shwartz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>