Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When it comes to sperm competition, size can matter — it’s the female who holds the aces


Syracuse University researchers pick up where Darwin left off: Groundbreaking study to be published in the Nov. 8 issue of Science

When it comes to mating and determining whose sperm reaches the elusive egg, females control both the playing field and the rules of the game, according to a new study on male sperm competition vs. female choice to be published in the Nov. 8 issue of Science.
"Our study demonstrates, unambiguously, the active role females play in determining the conditions under which sperm compete inside the female reproductive tract," says Scott Pitnick, professor of biology at Syracuse University, who published the study with co-researcher Gary T. Miller, a postdoctoral research associate at SU. "It’s widely known that, throughout the animal kingdom, sperm cells evolve rapidly into some of the most outrageous variations in size and shape. Until now, we didn’t know why. Our study shows that it’s because of female choice. The shape and physiology of the female reproductive tract is driving this variation in sperm."

Most people are familiar with the elaborate competitions that occur between males before mating, such as the ritualistic clash of horns of Big Horn Sheep or the bloody battles between male elephant seals. However, relatively little is understood about how sperm compete after mating has occurred, says Pitnick, an evolutionary biologist who has been studying sexual selection and the nature of sex differences for more than 15 years. In a 1995 study published in Nature, he documented the longest sperm cell known to science. It belongs to a species of fruit fly called Drosophila bifurca and measures some two inches in length when fully uncoiled.

"It was once a widely held belief that males sacrificed quality for quantity when it comes to sperm production and the competition to fertilize eggs," Pitnick says. "In 1995, we documented exceptions to the rule. That finding led us to wonder why some species take the time to produce a few gigantic sperm when the majority seem content to spew out millions of tiny sperm."

Contrary to popular belief, females in most species are promiscuous, mating with more than one male during a single mating season, Pitnick says. Females of most species also have specialized sperm-storage organs where sperm from different males compete to emerge and race for the egg. Pitnick and Miller used populations of another species of fruit fly called Drosophila melanogaster to discover the nature of the relationship between sperm size, the size of female sperm-storage organs and successful fertilization. The researchers manipulated the populations and selected groups based on the length of sperm and the length of the female sperm-storage organs.

The result: All males competed equally well within females with short sperm-storage organs, but males with longer sperm out-competed their less endowed rivals within females sporting longer storage organs. The advantage to males of longer sperm increased with increasing length of the female tract. "This means," Pitnick says, "that the length of the sperm-storage organ is a mechanism dictating female choice among potential sires of her offspring. Females choose among males based on the length of their sperm. Long sperm tails are thus the post-copulatory, cellular equivalent of long peacock tail feathers."

The researchers’ conclusion was supported in a separate experiment in which evolving female sperm-storage organs were shown to drive the evolution of sperm length.

"Now that we know about sperm-female co-evolution, it’s important to ask what happens when populations are isolated from one another," Pitnick says. "Sperm from one population may become mismatched and thus reproductively incompatible with the females of the other population. This is where the rubber meets the road for speciation. The seemingly esoteric whimsy of female choosiness for longer sperm may have surprisingly important consequences for biodiversity."

Judy Holmes | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>