Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When it comes to sperm competition, size can matter — it’s the female who holds the aces

08.11.2002


Syracuse University researchers pick up where Darwin left off: Groundbreaking study to be published in the Nov. 8 issue of Science



When it comes to mating and determining whose sperm reaches the elusive egg, females control both the playing field and the rules of the game, according to a new study on male sperm competition vs. female choice to be published in the Nov. 8 issue of Science.
"Our study demonstrates, unambiguously, the active role females play in determining the conditions under which sperm compete inside the female reproductive tract," says Scott Pitnick, professor of biology at Syracuse University, who published the study with co-researcher Gary T. Miller, a postdoctoral research associate at SU. "It’s widely known that, throughout the animal kingdom, sperm cells evolve rapidly into some of the most outrageous variations in size and shape. Until now, we didn’t know why. Our study shows that it’s because of female choice. The shape and physiology of the female reproductive tract is driving this variation in sperm."

Most people are familiar with the elaborate competitions that occur between males before mating, such as the ritualistic clash of horns of Big Horn Sheep or the bloody battles between male elephant seals. However, relatively little is understood about how sperm compete after mating has occurred, says Pitnick, an evolutionary biologist who has been studying sexual selection and the nature of sex differences for more than 15 years. In a 1995 study published in Nature, he documented the longest sperm cell known to science. It belongs to a species of fruit fly called Drosophila bifurca and measures some two inches in length when fully uncoiled.



"It was once a widely held belief that males sacrificed quality for quantity when it comes to sperm production and the competition to fertilize eggs," Pitnick says. "In 1995, we documented exceptions to the rule. That finding led us to wonder why some species take the time to produce a few gigantic sperm when the majority seem content to spew out millions of tiny sperm."

Contrary to popular belief, females in most species are promiscuous, mating with more than one male during a single mating season, Pitnick says. Females of most species also have specialized sperm-storage organs where sperm from different males compete to emerge and race for the egg. Pitnick and Miller used populations of another species of fruit fly called Drosophila melanogaster to discover the nature of the relationship between sperm size, the size of female sperm-storage organs and successful fertilization. The researchers manipulated the populations and selected groups based on the length of sperm and the length of the female sperm-storage organs.

The result: All males competed equally well within females with short sperm-storage organs, but males with longer sperm out-competed their less endowed rivals within females sporting longer storage organs. The advantage to males of longer sperm increased with increasing length of the female tract. "This means," Pitnick says, "that the length of the sperm-storage organ is a mechanism dictating female choice among potential sires of her offspring. Females choose among males based on the length of their sperm. Long sperm tails are thus the post-copulatory, cellular equivalent of long peacock tail feathers."

The researchers’ conclusion was supported in a separate experiment in which evolving female sperm-storage organs were shown to drive the evolution of sperm length.

"Now that we know about sperm-female co-evolution, it’s important to ask what happens when populations are isolated from one another," Pitnick says. "Sperm from one population may become mismatched and thus reproductively incompatible with the females of the other population. This is where the rubber meets the road for speciation. The seemingly esoteric whimsy of female choosiness for longer sperm may have surprisingly important consequences for biodiversity."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Life Sciences:

nachricht Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells
23.10.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The birth of a new protein
20.10.2017 | University of Arizona

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>