Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny plant poised to yield big payoffs in environment and energy

28.10.2002


Using a phase-contrast microscope, the plant Chlamydomonas is magnified about 1000 times.
Credit: Yoshiki Nishimura/Boyce Thompson Institute
Copyright: © Cornell University


With the genomes of humans and several insects, animals and crop plants mapped or sequenced, biologists are turning their attention to single-celled algae no thicker than a human hair. Among the possible payoffs: crops requiring less fertilizer, a source of renewable energy and a new source for novel proteins.

The algae, Chlamydomonas reinhardtii , already are an important biological model for genetics research. Now, the complete genome of the plant’s chloroplast has been sequenced by scientists at the Boyce Thompson Institute (BTI) for Plant Research located on the campus of Cornell University. The chloroplast is the area of the plant that harvests light energy. Details of the sequencing (that is, determining the base sequence of each of the ordered DNA fragments) appear in the latest issue of the journal The Plant Cell (November 2002).

The complete chloroplast genome sequence, says David Stern, a biologist and vice president for research at BTI, a not-for-profit research organization, has made it possible to test the response of Chlamydomonas (pronounced CLAMMY-doe-moan-us) to various environmental stresses, work that is reported in an accompanying article in The Plant Cell . In addition, the organism’s nuclear genome is being sequenced by the Joint Genome Institute, a unit of the Department of Energy.



One type of environmental stress being explored, says Stern (who also is an adjunct professor of plant biology at Cornell) is that of response to phosphates. The developed world, he says, puts too much phosphorous fertilizer on plants and crops. "It turns out that Chlamydomonas shares many of the responses to phosphate stress with crop plants. Working with Chlamydomonas, we can quickly test ways to improve tolerance or adaptation, perhaps leading to ways of engineering crop plants for the same purpose," he says.

If fertilizer use were decreased, phosphorous runoff into creeks, streams and lakes might be diminished. Phosphate leaching is a prime cause of algae blooms in lakes and ponds around agricultural areas.

The algae might also one day be a source of hydrogen, a clean-burning fuel. At present, hydrogen used in a type of battery called a fuel cell (still in its infancy for powering cars and boats) is extracted from natural gas -- a nonrenewable resource. A group led by Anastasios Melis, a professor at the University of California-Berkeley, is exploring the use of Chlamydomonas as a renewable hydrogen source.

Additional applications include using the Chlamydomonas chloroplast as a "bioreactor" to create, or "over-express," a variety of novel proteins for agricultural, industrial and biomedical purposes, says Jason Lilly, a BTI postdoctoral researcher.

Chlamydomonas plants have been useful to science for a century in both agriculture and energy research. In nature, the organisms are widely present in fresh and brackish water, all kinds of soils, underwater thermal vents and even under the Antarctic ice shelf. One species of Chlamydomonas sports a red pigment -- as protection from solar damage -- and is found in alpine or arctic regions. These red algae create a phenomenon referred to as "red snow." The organism’s global dispersion demonstrates the algae’s adaptive nature, says Stern.

"Chlamydomonas is a relatively simple organism and easy to work with," says Stern. "One drawback, however, is that despite its long history as a laboratory organism, the scientific community has lacked so-called genomics resources. This long-awaited part of the genetic toolbox promises to be a boon for scientists."

Completing the Chlamydomonas chloroplast genome sequence is part of a larger Chlamydomonas Genomic Initiative, spearheaded by Arthur Grossman of Stanford University, working at the Carnegie Institution of Washington. Stern’s chloroplast genome studies, a project that began three years ago, have been supported by grants from the National Science Foundation and the National Institutes of Health.

In addition to Stern and Lilly, the other authors and researchers are: Jude E. Maul, BTI laboratory researcher; Liying Cui, Claude W. dePamphilis and Webb Miller of Pennsylvania State University; and Elizabeth Harris of Duke University. The articles, "Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats" and "The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli," are scheduled to appear in the November printed issue and the online edition of The Plant Cell .

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://bti.cornell.edu/bti2/chlamyweb/
http://www.biology.duke.edu/chlamy_genome/index.html
http://bahama.jgi-psf.org/prod/bin/chlamy/home.chlamy.cgi

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>