Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA geneticists find location of major gene in ADHD; targeted region also linked to autism

23.10.2002


UCLA Neuropsychiatric Institute researchers have localized a region on chromosome 16 that is likely to contain a risk gene for Attention Deficit Hyperactivity Disorder, the most prevalent childhood-onset psychiatric disorder.



Their research, published in the October edition of the American Journal of Human Genetics, suggests that the suspected risk gene may contribute as much as 30 percent of the underlying genetic cause of ADHD and may also be involved in a separate childhood onset disorder, autism.

Pinpointing a gene with a major role in ADHD will help researchers and clinicians better understand the biology of this disorder and likely lead to the development of improved diagnosis, treatment and early intervention.


“We know there are about 35,000 genes in the human genome. By highlighting this region on chromosome 16, we have narrowed our search for a risk gene underlying ADHD to some 100 to 150 genes,” said Susan Smalley, principal investigator of the study and co-director of the Center for Neurobehavioral Genetics at the UCLA Neuropsychiatric Institute.

“Still, we must wait for independent replication of our results to confirm these findings,” said Smalley, also a professor of psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA. “Ultimately, we must identify the specific risk gene from among the 100 to 150 genes in this region before we can move to the next level of using such findings to help individuals with ADHD.”

By studying families in which there are two or more ADHD siblings, the investigators were able to “scan” the entire human genome, containing some 35,000 genes, to focus in on specific regions likely to contain a gene contributing to ADHD.

In their initial scan, several regions showed modest support for a risk gene; however, in a follow-up study of one region on chromosome 16, evidence of a risk gene was striking — with favorable odds of 10,000 to 1. Surprisingly, independent studies have implicated the same region as harboring a risk gene for autism, suggesting that ADHD and autism may have some common genetic underpinnings. Whether a common gene contributes to both remains to be determined.

ADHD and autism are very distinct clinical conditions. Although certain features are shared, the underlying biological mechanisms are thought to be distinct. If a common risk gene on chromosome 16 were found to underlie ADHD and autism, Smalley said, the finding would illustrate that genes affecting neurobiological mechanisms can cut across clinical boundaries, as most geneticists suspect.

“This study provides compelling evidence that ADHD and autism may have a lot more in common than we ever thought, with implications for both diagnosis and treatment,” Smalley said. “However, further investigation is required to determine the significance of this finding, as it is also quite feasible that distinct risk genes underlying each condition just happen to be in close proximity on chromosome 16.”

UCLA researchers spent five years collecting clinical, cognitive and genetic data from 203 families with multiple ADHD children. Their initial search for shared DNA markers suggested regions on chromosomes 16, 10 and 12. Focusing their attention on chromosome 16, researchers found a series of molecular “markers” shared among sibling pairs at a rate higher than the 50 percent sharing expected due to their degree of relationship.

Based on the observed degree of DNA sharing among ADHD siblings, the researchers estimate that the risk gene — if replicated by other scientists studying ADHD — might account for as much as 30 percent of the genetic cause of ADHD. As with any initial finding, however, the investigators caution that replication is necessary and that significant work with more families will be needed to find a specific risk gene in that location.

Previous investigations into a genetic cause for ADHD have focused on specific candidate genes, such as those involved in regulation of dopamine, a chemical in the brain implicated in ADHD. Previous studies of dopamine receptor genes (whose products are important in releasing dopamine in the cells) and dopamine transporter genes (whose products are involved in moving dopamine between cells) suggest they may also be involved in ADHD. The risk for ADHD in individuals carrying these genes, however, is very small, maybe 1.2 to 1.5 times the risk of those without such genes.

ADHD is the most common childhood-onset behavioral disorder, affecting as many as one in 10 children and three times as many boys as girls. Symptoms of both inattention and hyperactivity, which can last into adulthood, can affect school and work performance as well as social skills. Researchers estimate that the cause of ADHD is 70 percent to 80 percent genetic, and the remainder largely environmental.

Autism is a neurological disorder that affects perhaps as many as one in 500 children and usually appears within the first three years of a child’s life. It affects the brain in the areas of social interaction and communication. Autism, like ADHD, is thought to be due to multiple genetic and environmental factors, although genetics seems to dominate, with more than 60 percent to 70 percent of the underlying cause of autism thought to be genetic.

The National Institute of Mental Health, a University of California BioStar grant and the Wellcome Trust, through the Wellcome Trust Centre for Human Genetics in Oxford, England, provided financial support for the research.

A team of investigators at UCLA and the Wellcome Trust Center for Human Genetics in Oxford conducted the research. The UCLA team includes Stanley F. Nelson and members of his lab, Vlad Kustanovich, Jennifer Stone and Matthew Ogdie of the UCLA Center for Neurobehavioral Genetics and Department of Human Genetics; James J. McGough and James T. McCracken of the UCLA Department of Psychiatry and Biobehavioral Sciences; Rita M. Cantor of the UCLA Department of Human Genetics; and Sonia L. Minassian of the UCLA Center for Neurobehavioral Genetics and Department of Biostatistics. The team from Wellcome Trust Centre for Human Genetics, led by Anthony P. Monaco, includes Simon E. Fisher, Laurence MacPhie and Clyde Francks.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders.

Research at the Institute’s Center for Neurobehavioral Genetics focuses on the discovery of the genetic basis of major neurobehavioral disorders, including autism, attention deficit hyperactivity disorder, dementias, depression, manic-depressive illness (bipolar disorder) and schizophrenia.

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu/
http://www.journals.uchicago.edu/AJHG/
http://www.npi.ucla.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>