Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At that star, turn left!

17.10.2002


Our bodies contain proteins that are made of smaller molecules that can be either left- or right-handed, depending upon their structure. Regardless of which hand we use to write, however, all human beings are `left-handed` at the molecular level. Life on Earth uses the left-handed variety and no one knows how this preference crept into living systems. In 2012, ESA`s Rosetta lander will land on a comet to investigate, among other things, if the origin of this preference lies in the stars.



Living cells use tiny organic molecules (called amino acids) to build proteins in the same way as children build things out of Lego bricks. Most amino acids come in two mirror-image varieties, right- and left-handed. The arrangement of the thumb and four fingers on a left hand is the mirror image of the arrangement on the right. In amino acids, the arrangement of the atoms determines whether the molecule is left- or right-handed.

Uwe Meierhenrich, at the University of Bremen, Germany, thinks that the Earth`s early supply of amino acids came from space, carried by comets. He is part of a European team who reproduced the way organic molecules form in space, to try to understand what the Rosetta lander might find on Comet Wirtanen in 2012.


At a laboratory in Leiden, The Netherlands, they lowered the temperature of a chamber to -261°C, pumped out the air, and injected a rarefied mixture of molecules known to exist in space: water, ammonia, and simple carbon molecules. These molecules froze onto artificial dust grains inside the chamber. They then shone an ultraviolet lamp onto the samples, to simulate starlight. "Our aim was to simulate interstellar conditions as accurately as possible. We did not adapt the conditions to produce amino acids," says Meierhenrich.

Using a version of Rosetta`s Cometary Sampling and Composition (COSAC) experiment, they found newly formed right- and left-handed amino acids in equal quantities. Earthly life, however, uses only left-handed amino acids. Experiments during the 1950s showed that adding right-handed amino acids to proteins stopped the proteins from growing. Was Earth supplied with more left-handed amino acids than right-handed ones in the beginning, allowing life to begin? One famous study has suggested this. Meierhenrich says, "The excess (of left-handed amino acids) found in the Murcheson meteorite is really small and some of the analyses are controversial. Rosetta will give us a much clearer picture."

Some scientists think the key to creating an excess of left over right is in the type of ultraviolet light that shines on the amino acids. When ultraviolet starlight strikes dust grains, it can begin to twist - either clockwise or anticlockwise. Depending on the direction in which it is twisting, it destroys one handedness of amino acid more than the other. In 1998, an international group of astronomers discovered large amounts of `twisty` light occurring naturally in the dusty cocoons of some young stars, where planets might be forming. "I think this is the most probable origin of the excesses," says Meierhenrich who is now using a Paris Laboratory where scientists can twist ultraviolet light to recreate these conditions.

We may well find that Rosetta`s findings on Comet Wirtanen reliably indicate that our molecular left-handedness is indeed a legacy of the stars.

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>