Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA neuroscientists discovery distinct molecular key to overcoming fear

15.10.2002


In a discovery with implications for treatment of anxiety disorders, UCLA Neuropsychiatric Institute investigators have identified a distinct molecular process in the brain involved in overcoming fear. The findings will be published in the Oct. 15 edition of the Journal of Neuroscience.



The study of how mice acquire, express and extinguish conditional fear shows for the first time that L-type voltage-gated calcium channels (LVGCCs) -- one of hundreds of varieties of electrical switches found in brain cells -- are required to overcome fear but play no role in becoming fearful or expressing fear. The findings suggest that it may be possible to identify the cells, synapses and molecular pathways specific to extinguishing fear, and to the treatment of human anxiety disorders.

"Brain plasticity, or the ability of the central nervous system to modify cellular connections, has long been recognized as a key component to learning and memory," said Dr. Mark Barad, the UCLA Neuropsychiatric Institute’s Tennenbaum Family Center faculty scholar and an assistant professor in-residence of psychiatry at the David Geffen School of Medicine at UCLA. "The discovery of a distinct molecular process in overcoming fear bodes well for development of new drugs that can make psychotherapy, or talk therapy, easier and more effective in treating anxiety disorders. More broadly, the findings also suggest that distinct molecular processes may be involved in the expression and treatment of other psychiatric disorders."


Both the acquisition and extinction of conditional fear are forms of active learning. The acquisition of conditional fear requires a unique pairing of an initially neutral conditional stimulus with an aversive unconditional stimulus. In this research, the conditional stimulus was a tone and the unconditional stimulus was a mild foot shock.

Although extinction, the reduction of conditional responding after repeated exposures to the conditional stimulus alone, might initially appear to be a passive decay, or erasure of this association, many studies indicate that extinction is new inhibitory learning, which leaves the original memory intact.

In examining this process, UCLA researchers used injections of two LVGCC inhibitors -- nifedipine and nimodipine -- to test whether LVGCC activity is required for the 1) acquisition, 2) expression and 3) extinction of conditional fear. Results showed that blocking LVGCC activity had no effect on the acquisition or expression of fear, but effectively prevented extinction.

The research was supported by a National Alliance for Research on Schizophrenia and Depression Young Investigator Award, and by the Forest Award of the West Coast College of Biological Psychiatry.

Other investigators involved in the project were Chris Cain of the UCLA Interdepartmental Program in Neuroscience and Ashley Blouin of the UCLA Department of Psychiatry and Biobehavioral Sciences. Barad also is affiliated with the UCLA Brain Research Institute.

The Tennenbaum Family Center at the UCLA Neuropsychiatric Institute was created earlier this year with a four-year, $1 million gift from Michael E. and Suzanne Tennenbaum. Michael Tennenbaum is managing member of Tennenbaum and Company, a private Los Angeles-based investment firm he founded in 1996.

In addition to the faculty scholar program, the center is encouraging research into brain plasticity by providing seed money to promising research projects and offering graduate student and post-doctoral fellowship support.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders.

Dan Page | EurekAlert!
Further information:
http://www.npi.ucla.edu/
http://www.bri.ucla.edu/index.htm
http://www.medsch.ucla.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>