Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA neuroscientists discovery distinct molecular key to overcoming fear

15.10.2002


In a discovery with implications for treatment of anxiety disorders, UCLA Neuropsychiatric Institute investigators have identified a distinct molecular process in the brain involved in overcoming fear. The findings will be published in the Oct. 15 edition of the Journal of Neuroscience.



The study of how mice acquire, express and extinguish conditional fear shows for the first time that L-type voltage-gated calcium channels (LVGCCs) -- one of hundreds of varieties of electrical switches found in brain cells -- are required to overcome fear but play no role in becoming fearful or expressing fear. The findings suggest that it may be possible to identify the cells, synapses and molecular pathways specific to extinguishing fear, and to the treatment of human anxiety disorders.

"Brain plasticity, or the ability of the central nervous system to modify cellular connections, has long been recognized as a key component to learning and memory," said Dr. Mark Barad, the UCLA Neuropsychiatric Institute’s Tennenbaum Family Center faculty scholar and an assistant professor in-residence of psychiatry at the David Geffen School of Medicine at UCLA. "The discovery of a distinct molecular process in overcoming fear bodes well for development of new drugs that can make psychotherapy, or talk therapy, easier and more effective in treating anxiety disorders. More broadly, the findings also suggest that distinct molecular processes may be involved in the expression and treatment of other psychiatric disorders."


Both the acquisition and extinction of conditional fear are forms of active learning. The acquisition of conditional fear requires a unique pairing of an initially neutral conditional stimulus with an aversive unconditional stimulus. In this research, the conditional stimulus was a tone and the unconditional stimulus was a mild foot shock.

Although extinction, the reduction of conditional responding after repeated exposures to the conditional stimulus alone, might initially appear to be a passive decay, or erasure of this association, many studies indicate that extinction is new inhibitory learning, which leaves the original memory intact.

In examining this process, UCLA researchers used injections of two LVGCC inhibitors -- nifedipine and nimodipine -- to test whether LVGCC activity is required for the 1) acquisition, 2) expression and 3) extinction of conditional fear. Results showed that blocking LVGCC activity had no effect on the acquisition or expression of fear, but effectively prevented extinction.

The research was supported by a National Alliance for Research on Schizophrenia and Depression Young Investigator Award, and by the Forest Award of the West Coast College of Biological Psychiatry.

Other investigators involved in the project were Chris Cain of the UCLA Interdepartmental Program in Neuroscience and Ashley Blouin of the UCLA Department of Psychiatry and Biobehavioral Sciences. Barad also is affiliated with the UCLA Brain Research Institute.

The Tennenbaum Family Center at the UCLA Neuropsychiatric Institute was created earlier this year with a four-year, $1 million gift from Michael E. and Suzanne Tennenbaum. Michael Tennenbaum is managing member of Tennenbaum and Company, a private Los Angeles-based investment firm he founded in 1996.

In addition to the faculty scholar program, the center is encouraging research into brain plasticity by providing seed money to promising research projects and offering graduate student and post-doctoral fellowship support.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders.

Dan Page | EurekAlert!
Further information:
http://www.npi.ucla.edu/
http://www.bri.ucla.edu/index.htm
http://www.medsch.ucla.edu/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>