Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers: Protein family key to helping plants adapt

14.10.2002


Researchers have discovered how a recently identified family of plant proteins assists in stopping gene function, a finding that may help produce plants resistant to environmental stresses such as saline soil, drought and cold.



The proteins, AtCPLs, apparently play a crucial role in triggering a gene that controls plants’ reactions to stressful conditions, said Purdue University researchers. They, along with collaborators at the University of Arizona, published their findings in two papers appearing in a recent issue of Proceedings of the National Academy of Sciences.

AtCPLs are enzymes of a protein family that in humans controls initiation of gene activation. The family is called the C-terminal domain phosphates family.


Specifically, this enzyme family controls RNA required to produce messenger RNA, the initial product of the gene expression process. RNA, a molecule closely related to DNA, serves as a blueprint that tells cells to manufacture specific proteins.

"This family of proteins, AtCPLs, is undefined in plants," said Mike Hasegawa, co-senior author of a study describing two of the proteins. "The members we examined have both overlapping and unique functions, and this is novel."

Hasegawa, co-senior author Ray Bressan, and their team uncovered the proteins’ function by studying mutated Arabidopsis thaliana, a common research plant, to determine its response to the stress of growing in salty soil. The same mutations, called cpl1 and cpl3, also seem to alter response to cold and drought, and alter growth and flowering time.

"It’s become the prevailing feeling that when a plant senses its environment and signals to provide defense, the process turns on and off a number of different signal pathways that ultimately control the expression of specific genes that are required for adaptation," said Hasegawa, a horticulture professor.

"This research identifies a new temporal component of gene regulation that occurs after the initiation of transcription of the gene and seems to regulate important stress response processes of plants."

Transcription is when RNA copies and transfers the gene’s instructions to the cell onto a template of DNA.

Hasegawa, Bressan and their colleagues have mainly focused on plant adaptability to soil salinity. However, by working with a number of different mutations, they have identified genes that are relevant for plant adaptation to other environmental stresses such as cold and drought.

Now the scientists are investigating other proteins that may be involved in plant reaction to environmental stress. They hope to determine the overlapping and unique functions of AtCPL family members so they can use bioengineering to improve plant tolerance for adverse growing conditions.

The other researchers involved in the study in which Hasegawa and Bressan are principal investigators are: research biologist Hisashi Koiwa, Adam Barb, biomedical engineering senior research assistant Fang Li, Michael McCully, post doctoral fellow Irina Sokolchik, Zhizhong Gong, graduate research assistant Altanbadralt Sharkhuu and Yuzuki Manabe, and Shuji Yokoi all of the Purdue Department of Horticulture Center for Plant Environmental Stress Physiology. From the University of Arizona Department of Plant Sciences senior investigator Jianhau Zhu and researchers Liming Xiong, Jian-Kang Zhu, and Byeong-ha Lee. Muppala Reddy of Central Salt and Marine Chemicals Researcher Institute in India also participated in the study.

A National Science Foundation Plant Genome Award and a U.S. Department of Agriculture National Research Initiative Grant provided funding for this project.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Sources: Paul M. (Mike) Hasegawa, (765) 494-1315, paul.m.hasewaga.1@purdue.edu

Ray Bressan, (765) 494-1336, bressan@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/020903.Hasegawa.plntstress.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>