Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selfing DNA prevents genomes from mixing

11.10.2002


Genomes of multicellular organisms are one of the greatest mysteries of biology. The more is discovered about them, the more questions are to be answered. One of such questions is connected with the size of a genome. As is known since the middle of the 20th century, the level of organization of an organism does not depend on the genome size, i.e., on the amount of DNA in the nucleus of a cell. Sometimes, a primitive organism contains much more DNA than a mammal. For example, the genome of certain amoebas is 200 times as large as that of humans. The nature of this phenomenon has been understood very recently. The most part of DNA does not contain any of protein-coding genes. Because of its unclear function, it is called the selfing or junk DNA, which is somewhat abusive. Its share in genomes of some species riches 95% (in human genome, its content is 75%). The selfing DNA can hardly serve as a material for evolution: it is so unstable that has no time to develop into a functional structure. However, as long as each species has its specific junk DNA, it must serve for something.



Different scientists tried to find an explanation for the biological purpose of the selfing DNA. About fifteen hypotheses were offered, and most of them turned to be invalid. In Russia, this problem has been studied for many years by doctor of biological sciences Aleksei Akifyev and his colleagues. The scientists believe that an actual function of the selfing DNA stands behind a phenomenon known for already 100 years and called the chromatin diminution. This is a key term in this context, let us remember it. The chromatin diminution is the elimination of an inactive chromatin from a genome. Some multicellular animals, such as ascarids and small crustaceans Cyclopoida, lose an important part of their chromosomal DNA at the early stages of embryogenesis. The diminution normally takes place in cells that are to build the body and never occurs in developmental precursors of germ cells. The latter still have all their selfing DNA. Apparently, these are the cells, in which the selfing DNA is functionally significant. The scientists have revealed that the selfing DNA prevents the confusion of closely related species.

Aleksei Akifyev and his colleagues have studied the genetic isolation mechanism using near species of crustaceans Cyclopoida as an example. The chromatin diminution is characteristic of one species and never occurs with the other. The researchers suggest that the DNA elimination is performed by certain enzymes that cut the genome at the right time and in the right place and are contained in the cytoplasm of an ovum. If a sperm cell of one species enters an ovum of another species, then the embryo dies either because of a failure to perform a necessary diminution or because of an unreasonable elimination of vital chromosomes by aforementioned enzymes.


The chromatin diminution never takes place in cells of humans and most animals, but they isolate the selfing DNA in another way ? by placing it in a position unreachable for most enzymes and thus making it functionally cut off. Each species has a unique structure and packing of the selfing DNA. In other words, indirect ways of a physical separation of some part of genome are known for many organisms.

Thus, a certain part of a genome with a particular size and structure serves for the genetic isolation of species. Therefore the selfing or junk DNA is not a piece of garbage, but a vital component. If one mechanism eliminates it, another mechanism should restore it while a species still exists. The scientists expect to understand more, if they will manage to reveal the molecular organization of the selfing DNA. The most suitable material for this study is DNA lost from cells as a result of the diminution.

Natalia Reznik | alfa

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>