Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selfing DNA prevents genomes from mixing

11.10.2002


Genomes of multicellular organisms are one of the greatest mysteries of biology. The more is discovered about them, the more questions are to be answered. One of such questions is connected with the size of a genome. As is known since the middle of the 20th century, the level of organization of an organism does not depend on the genome size, i.e., on the amount of DNA in the nucleus of a cell. Sometimes, a primitive organism contains much more DNA than a mammal. For example, the genome of certain amoebas is 200 times as large as that of humans. The nature of this phenomenon has been understood very recently. The most part of DNA does not contain any of protein-coding genes. Because of its unclear function, it is called the selfing or junk DNA, which is somewhat abusive. Its share in genomes of some species riches 95% (in human genome, its content is 75%). The selfing DNA can hardly serve as a material for evolution: it is so unstable that has no time to develop into a functional structure. However, as long as each species has its specific junk DNA, it must serve for something.



Different scientists tried to find an explanation for the biological purpose of the selfing DNA. About fifteen hypotheses were offered, and most of them turned to be invalid. In Russia, this problem has been studied for many years by doctor of biological sciences Aleksei Akifyev and his colleagues. The scientists believe that an actual function of the selfing DNA stands behind a phenomenon known for already 100 years and called the chromatin diminution. This is a key term in this context, let us remember it. The chromatin diminution is the elimination of an inactive chromatin from a genome. Some multicellular animals, such as ascarids and small crustaceans Cyclopoida, lose an important part of their chromosomal DNA at the early stages of embryogenesis. The diminution normally takes place in cells that are to build the body and never occurs in developmental precursors of germ cells. The latter still have all their selfing DNA. Apparently, these are the cells, in which the selfing DNA is functionally significant. The scientists have revealed that the selfing DNA prevents the confusion of closely related species.

Aleksei Akifyev and his colleagues have studied the genetic isolation mechanism using near species of crustaceans Cyclopoida as an example. The chromatin diminution is characteristic of one species and never occurs with the other. The researchers suggest that the DNA elimination is performed by certain enzymes that cut the genome at the right time and in the right place and are contained in the cytoplasm of an ovum. If a sperm cell of one species enters an ovum of another species, then the embryo dies either because of a failure to perform a necessary diminution or because of an unreasonable elimination of vital chromosomes by aforementioned enzymes.


The chromatin diminution never takes place in cells of humans and most animals, but they isolate the selfing DNA in another way ? by placing it in a position unreachable for most enzymes and thus making it functionally cut off. Each species has a unique structure and packing of the selfing DNA. In other words, indirect ways of a physical separation of some part of genome are known for many organisms.

Thus, a certain part of a genome with a particular size and structure serves for the genetic isolation of species. Therefore the selfing or junk DNA is not a piece of garbage, but a vital component. If one mechanism eliminates it, another mechanism should restore it while a species still exists. The scientists expect to understand more, if they will manage to reveal the molecular organization of the selfing DNA. The most suitable material for this study is DNA lost from cells as a result of the diminution.

Natalia Reznik | alfa

More articles from Life Sciences:

nachricht If solubilty is the problem - Mechanochemistry is the solution
25.05.2018 | Technische Universität Dresden

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018 | Life Sciences

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018 | Interdisciplinary Research

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>