Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue corrals new Trojan horse to replace wayward genes in mice

10.10.2002


A research team at two Midwest universities has developed a new way to genetically alter cells in living mice, offering new possibilities in the war against cancer and other diseases.



Using a modified virus as a Trojan horse, a team led by Purdue University’s David Sanders has found a promising system to deliver genes to diseased liver and brain cells. By placing helpful genetic material within the outer protein shell of Ross River Virus (RRV), Sanders’ team was able to alter the mice’s liver cells without producing the harmful side effects that have accompanied the use of other retroviruses.

"This represents a major advance in that we have used retroviruses for gene therapy, not just in tissue samples, but in living mice," said Sanders, associate professor of biological sciences at Purdue. "This brings us a giant step closer to treating human diseases."


The research, which is a collaboration between Purdue and the University of Iowa, appeared in the September issue of the Journal of Virology.

Gene therapy is the introduction of new genetic material into an organism for medical benefit, such as correcting the genetic defect responsible for cystic fibrosis. It also can be used to alter or destroy defective cells, which makes gene therapy a possible treatment method for cancer. Viruses play a key role in this fledgling field because of their natural ability to transport and transfer genetic material.

While viruses are often looked upon as harmful, their ability to introduce genes into cells gives them great potential as delivery vehicles for therapeutic genes. Ordinarily, a virus injects its own genetic material into a cell, but viral researchers have learned how to "borrow" the outer shell from a harmful virus and fill it up with other, beneficial genetic material.

The chimeric viruses that Sanders’ group constructed consist of an outer shell taken from the RRV alphavirus, which typically infects Australian marsupials. The RRV shell allowed the group to solve two problems that have plagued viral researchers for some time: how to treat living organisms (rather than merely samples of tissue in a test tube) and how to avoid causing damage to those organisms while rebuilding their cells.

"Up until this point, a lot of gene therapy research was being done with a retrovirus coated with a protein called vesicular stomatitis virus G," Sanders said. "It has a protein shell that binds to just about any kind of cell, which is terrific if you want lots of options for gene therapy. The trouble is, the proteins are toxic to most cells as well, which is, of course, not so good."

When the team of Beverly Davidson and Paul McCray at the University of Iowa injected its homemade retrovirus into healthy mice, it proved highly effective at introducing new genes into livers. Just as encouraging was the discovery that during the DNA modification process, the retroviruses did not damage the liver cells.

"Not only were the genes successfully transferred, but the RRV envelope proteins did not damage the cells," Sanders said. "We succeeded on both fronts."

Because RRV can be injected intravenously and can bind to such a large number of cells, Sanders said he believes the technique could be useful for a range of illnesses. One promising target is glial cells in the brain, which provide structural support for neurons. Most brain tumors occur in glial cells, which form most of the brain’s mass.

"This research shows that RRV has tremendous utility, especially for treating the liver," Sanders said. "But because of its ability to target glial cells, RRV can also potentially be used for a number of muscular and neurodegenerative diseases such as Parkinson’s disease, multiple sclerosis and brain tumors."

Another potential application is delivering protein products directly into the bloodstream, which could lead to treatments for blood disorders.

"This is the direction we need to explore next," Sanders said. "If we can use retroviruses to carry therapeutic proteins directly to the bloodstream, it could provide treatments for hemophilia."

Sanders emphasizes that while the work is a leap forward for gene therapy, it will be several years before the technique is ready for human testing.

"I don’t imagine having clinical trials on human diseases for at least five years – there’s still a lot to be done," he said. "What we have done is found a great stepping stone. It should encourage other researchers to search for alternative virus shells for gene delivery."

This work is supported by the National Institutes of Health, the Indiana Elks Charities Inc. and the Cystic Fibrosis Foundation.

Sanders conducts research, in part, at the Purdue Cancer Research Center, which coordinates interdisciplinary cancer-related research in the basic biomedical and life sciences. The center, established in 1976, provides shared resources for nearly 70 research groups on the West Lafayette and other Purdue campuses.

The Purdue Cancer Center is supported by the National Cancer Institute (NCI), the American Cancer Society, the Indiana Elks, the Indiana Lions Clubs and several local county cancer societies. The Purdue Cancer Research Center is a NCI designated basic laboratory research center.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: David Sanders, (765) 494-6453, retrovir@purdue.edu

Beverly Davidson, (319) 353-5511, beverly-davidson@uiowa.edu
Paul McCray, (319) 356-4866, paul-mccray@uiowa.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>