Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue corrals new Trojan horse to replace wayward genes in mice

10.10.2002


A research team at two Midwest universities has developed a new way to genetically alter cells in living mice, offering new possibilities in the war against cancer and other diseases.



Using a modified virus as a Trojan horse, a team led by Purdue University’s David Sanders has found a promising system to deliver genes to diseased liver and brain cells. By placing helpful genetic material within the outer protein shell of Ross River Virus (RRV), Sanders’ team was able to alter the mice’s liver cells without producing the harmful side effects that have accompanied the use of other retroviruses.

"This represents a major advance in that we have used retroviruses for gene therapy, not just in tissue samples, but in living mice," said Sanders, associate professor of biological sciences at Purdue. "This brings us a giant step closer to treating human diseases."


The research, which is a collaboration between Purdue and the University of Iowa, appeared in the September issue of the Journal of Virology.

Gene therapy is the introduction of new genetic material into an organism for medical benefit, such as correcting the genetic defect responsible for cystic fibrosis. It also can be used to alter or destroy defective cells, which makes gene therapy a possible treatment method for cancer. Viruses play a key role in this fledgling field because of their natural ability to transport and transfer genetic material.

While viruses are often looked upon as harmful, their ability to introduce genes into cells gives them great potential as delivery vehicles for therapeutic genes. Ordinarily, a virus injects its own genetic material into a cell, but viral researchers have learned how to "borrow" the outer shell from a harmful virus and fill it up with other, beneficial genetic material.

The chimeric viruses that Sanders’ group constructed consist of an outer shell taken from the RRV alphavirus, which typically infects Australian marsupials. The RRV shell allowed the group to solve two problems that have plagued viral researchers for some time: how to treat living organisms (rather than merely samples of tissue in a test tube) and how to avoid causing damage to those organisms while rebuilding their cells.

"Up until this point, a lot of gene therapy research was being done with a retrovirus coated with a protein called vesicular stomatitis virus G," Sanders said. "It has a protein shell that binds to just about any kind of cell, which is terrific if you want lots of options for gene therapy. The trouble is, the proteins are toxic to most cells as well, which is, of course, not so good."

When the team of Beverly Davidson and Paul McCray at the University of Iowa injected its homemade retrovirus into healthy mice, it proved highly effective at introducing new genes into livers. Just as encouraging was the discovery that during the DNA modification process, the retroviruses did not damage the liver cells.

"Not only were the genes successfully transferred, but the RRV envelope proteins did not damage the cells," Sanders said. "We succeeded on both fronts."

Because RRV can be injected intravenously and can bind to such a large number of cells, Sanders said he believes the technique could be useful for a range of illnesses. One promising target is glial cells in the brain, which provide structural support for neurons. Most brain tumors occur in glial cells, which form most of the brain’s mass.

"This research shows that RRV has tremendous utility, especially for treating the liver," Sanders said. "But because of its ability to target glial cells, RRV can also potentially be used for a number of muscular and neurodegenerative diseases such as Parkinson’s disease, multiple sclerosis and brain tumors."

Another potential application is delivering protein products directly into the bloodstream, which could lead to treatments for blood disorders.

"This is the direction we need to explore next," Sanders said. "If we can use retroviruses to carry therapeutic proteins directly to the bloodstream, it could provide treatments for hemophilia."

Sanders emphasizes that while the work is a leap forward for gene therapy, it will be several years before the technique is ready for human testing.

"I don’t imagine having clinical trials on human diseases for at least five years – there’s still a lot to be done," he said. "What we have done is found a great stepping stone. It should encourage other researchers to search for alternative virus shells for gene delivery."

This work is supported by the National Institutes of Health, the Indiana Elks Charities Inc. and the Cystic Fibrosis Foundation.

Sanders conducts research, in part, at the Purdue Cancer Research Center, which coordinates interdisciplinary cancer-related research in the basic biomedical and life sciences. The center, established in 1976, provides shared resources for nearly 70 research groups on the West Lafayette and other Purdue campuses.

The Purdue Cancer Center is supported by the National Cancer Institute (NCI), the American Cancer Society, the Indiana Elks, the Indiana Lions Clubs and several local county cancer societies. The Purdue Cancer Research Center is a NCI designated basic laboratory research center.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: David Sanders, (765) 494-6453, retrovir@purdue.edu

Beverly Davidson, (319) 353-5511, beverly-davidson@uiowa.edu
Paul McCray, (319) 356-4866, paul-mccray@uiowa.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>