Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue corrals new Trojan horse to replace wayward genes in mice

10.10.2002


A research team at two Midwest universities has developed a new way to genetically alter cells in living mice, offering new possibilities in the war against cancer and other diseases.



Using a modified virus as a Trojan horse, a team led by Purdue University’s David Sanders has found a promising system to deliver genes to diseased liver and brain cells. By placing helpful genetic material within the outer protein shell of Ross River Virus (RRV), Sanders’ team was able to alter the mice’s liver cells without producing the harmful side effects that have accompanied the use of other retroviruses.

"This represents a major advance in that we have used retroviruses for gene therapy, not just in tissue samples, but in living mice," said Sanders, associate professor of biological sciences at Purdue. "This brings us a giant step closer to treating human diseases."


The research, which is a collaboration between Purdue and the University of Iowa, appeared in the September issue of the Journal of Virology.

Gene therapy is the introduction of new genetic material into an organism for medical benefit, such as correcting the genetic defect responsible for cystic fibrosis. It also can be used to alter or destroy defective cells, which makes gene therapy a possible treatment method for cancer. Viruses play a key role in this fledgling field because of their natural ability to transport and transfer genetic material.

While viruses are often looked upon as harmful, their ability to introduce genes into cells gives them great potential as delivery vehicles for therapeutic genes. Ordinarily, a virus injects its own genetic material into a cell, but viral researchers have learned how to "borrow" the outer shell from a harmful virus and fill it up with other, beneficial genetic material.

The chimeric viruses that Sanders’ group constructed consist of an outer shell taken from the RRV alphavirus, which typically infects Australian marsupials. The RRV shell allowed the group to solve two problems that have plagued viral researchers for some time: how to treat living organisms (rather than merely samples of tissue in a test tube) and how to avoid causing damage to those organisms while rebuilding their cells.

"Up until this point, a lot of gene therapy research was being done with a retrovirus coated with a protein called vesicular stomatitis virus G," Sanders said. "It has a protein shell that binds to just about any kind of cell, which is terrific if you want lots of options for gene therapy. The trouble is, the proteins are toxic to most cells as well, which is, of course, not so good."

When the team of Beverly Davidson and Paul McCray at the University of Iowa injected its homemade retrovirus into healthy mice, it proved highly effective at introducing new genes into livers. Just as encouraging was the discovery that during the DNA modification process, the retroviruses did not damage the liver cells.

"Not only were the genes successfully transferred, but the RRV envelope proteins did not damage the cells," Sanders said. "We succeeded on both fronts."

Because RRV can be injected intravenously and can bind to such a large number of cells, Sanders said he believes the technique could be useful for a range of illnesses. One promising target is glial cells in the brain, which provide structural support for neurons. Most brain tumors occur in glial cells, which form most of the brain’s mass.

"This research shows that RRV has tremendous utility, especially for treating the liver," Sanders said. "But because of its ability to target glial cells, RRV can also potentially be used for a number of muscular and neurodegenerative diseases such as Parkinson’s disease, multiple sclerosis and brain tumors."

Another potential application is delivering protein products directly into the bloodstream, which could lead to treatments for blood disorders.

"This is the direction we need to explore next," Sanders said. "If we can use retroviruses to carry therapeutic proteins directly to the bloodstream, it could provide treatments for hemophilia."

Sanders emphasizes that while the work is a leap forward for gene therapy, it will be several years before the technique is ready for human testing.

"I don’t imagine having clinical trials on human diseases for at least five years – there’s still a lot to be done," he said. "What we have done is found a great stepping stone. It should encourage other researchers to search for alternative virus shells for gene delivery."

This work is supported by the National Institutes of Health, the Indiana Elks Charities Inc. and the Cystic Fibrosis Foundation.

Sanders conducts research, in part, at the Purdue Cancer Research Center, which coordinates interdisciplinary cancer-related research in the basic biomedical and life sciences. The center, established in 1976, provides shared resources for nearly 70 research groups on the West Lafayette and other Purdue campuses.

The Purdue Cancer Center is supported by the National Cancer Institute (NCI), the American Cancer Society, the Indiana Elks, the Indiana Lions Clubs and several local county cancer societies. The Purdue Cancer Research Center is a NCI designated basic laboratory research center.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: David Sanders, (765) 494-6453, retrovir@purdue.edu

Beverly Davidson, (319) 353-5511, beverly-davidson@uiowa.edu
Paul McCray, (319) 356-4866, paul-mccray@uiowa.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>