Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists create synthetic cytochromes

08.10.2002


When animals metabolize food or when plants photosynthesize it, electrons are moved across cell membranes. The "extension cords" of this bioelectrical circuit are mostly iron-containing proteins called cytochromes.

Chemist Kenneth S. Suslick and colleagues at the University of Illinois at Urbana-Champaign have created synthetic cytochromes by making a small cyclic peptide that binds to the iron millions of times more strongly than without the peptide. The scientists report their discovery in a paper in the Oct. 23 issue of the Journal of the American Chemical Society.

Cytochromes are heme proteins; that is, the iron is held in the central hole of a doughnut-shaped heme. Related to hemoglobin and myoglobin -- the red-colored proteins that carry and store oxygen in blood and muscles -- cytochromes carry electrons rather than oxygen atoms.



"The heme is held very tightly in heme proteins, most commonly by bonds between the iron ion and the amino acid histidine," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "This bond is much stronger in proteins than it is for a heme binding free histidine. This makes cytochromes among the most stable of all proteins."

Suslick and his colleagues expected that a cyclic peptide would hold on to the iron ion heme like a tight ring on a finger. In fact, the researchers found that their cyclic peptide binds to heme 6,000 times more strongly than to two half-sized peptides that are not linked together, and 4 million times more strongly than histidine itself.

"Most of this effect is called ’preorganization,’" Suslick said. "By preforming the peptide ring, we make it much easier for the peptide to bind the heme. In addition, the heme stabilizes the structure of the cyclic peptide by making it fold into a perfect helix."

The synergism of these effects helps explain the important role that heme plays in making heme proteins so very stable. The heme holds the protein structure together at the same time that the protein holds onto the heme.

Such synthetic cytochromes may have pharmaceutical uses in the future.

"These heme-peptides are likely to carry electrons and ions across cell membranes," Suslick said. "This could make them very effective antibiotics, many of which kill bacteria by just this kind of transport."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>