Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA repair mechanisms are concentrated in the active parts of the genome


Less than 10% of the human genome contains coded information in the form of genes. The 30,000-40,000 genes in the genome are found grouped in discrete regions of the chromosomes. Chemical agents and radiation habitually cause a large variety of injuries to the DNA which interferes in many cell processes, like transcription and replication, and this can cause a loss of control of cell division and the appearance of tumours. In order to avoid this, the human genome contains more than 130 DNA repair genes which are coded by proteins that constantly scrutinise the genome and seek out damage in order to eliminate it.

A team of researchers from the Mutation Group at the Department of Genetics and Microbiology from the Autonomous University of Barcelona, together with investigators from Leiden University Medical Centre in Leiden (Holland), have discovered that the most important part of the human genome, that is to say the zones where the genes are grouped, are subject to a special and preferential control by the repair mechanisms. In this way, the presence of mutations and the appearance of cancer in the most active genes are prevented.

In order to determine how the repair mechanisms act in the whole human genome, the UAB scientists have studied lines of cells derived from the skin of healthy people and from patients deficient in the repair of DNA damage produced by solar radiation, a genetic disorder called xeroderma pigmentosa. In those affected by this disorder (popularised by the characters of the children in the film The Others), the repair mechanisms do not act when ultraviolet light shines on the skin cells, which causes them to have an accumulation of mutations and, therefore, an extremely high incidence of melanoma (skin cancer). The scientists have been able to observe how the repair of damage caused by ultraviolet rays is concentrated in the richest regions of the genome and, therefore, there is preferential repair of the most important part of the genome, called the transcriptome. By way of example, chromosome 19, the densest and most genetically active, shows high levels of repair, whereas in chromosome 4, one of the poorest in genes, there is practically no preferential repair of the mutations induced by ultraviolet light.

Octavi López Coronado | alfa

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>