Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair mechanisms are concentrated in the active parts of the genome

01.10.2002


Less than 10% of the human genome contains coded information in the form of genes. The 30,000-40,000 genes in the genome are found grouped in discrete regions of the chromosomes. Chemical agents and radiation habitually cause a large variety of injuries to the DNA which interferes in many cell processes, like transcription and replication, and this can cause a loss of control of cell division and the appearance of tumours. In order to avoid this, the human genome contains more than 130 DNA repair genes which are coded by proteins that constantly scrutinise the genome and seek out damage in order to eliminate it.



A team of researchers from the Mutation Group at the Department of Genetics and Microbiology from the Autonomous University of Barcelona, together with investigators from Leiden University Medical Centre in Leiden (Holland), have discovered that the most important part of the human genome, that is to say the zones where the genes are grouped, are subject to a special and preferential control by the repair mechanisms. In this way, the presence of mutations and the appearance of cancer in the most active genes are prevented.

In order to determine how the repair mechanisms act in the whole human genome, the UAB scientists have studied lines of cells derived from the skin of healthy people and from patients deficient in the repair of DNA damage produced by solar radiation, a genetic disorder called xeroderma pigmentosa. In those affected by this disorder (popularised by the characters of the children in the film The Others), the repair mechanisms do not act when ultraviolet light shines on the skin cells, which causes them to have an accumulation of mutations and, therefore, an extremely high incidence of melanoma (skin cancer). The scientists have been able to observe how the repair of damage caused by ultraviolet rays is concentrated in the richest regions of the genome and, therefore, there is preferential repair of the most important part of the genome, called the transcriptome. By way of example, chromosome 19, the densest and most genetically active, shows high levels of repair, whereas in chromosome 4, one of the poorest in genes, there is practically no preferential repair of the mutations induced by ultraviolet light.

Octavi López Coronado | alfa

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>