Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair mechanisms are concentrated in the active parts of the genome

01.10.2002


Less than 10% of the human genome contains coded information in the form of genes. The 30,000-40,000 genes in the genome are found grouped in discrete regions of the chromosomes. Chemical agents and radiation habitually cause a large variety of injuries to the DNA which interferes in many cell processes, like transcription and replication, and this can cause a loss of control of cell division and the appearance of tumours. In order to avoid this, the human genome contains more than 130 DNA repair genes which are coded by proteins that constantly scrutinise the genome and seek out damage in order to eliminate it.



A team of researchers from the Mutation Group at the Department of Genetics and Microbiology from the Autonomous University of Barcelona, together with investigators from Leiden University Medical Centre in Leiden (Holland), have discovered that the most important part of the human genome, that is to say the zones where the genes are grouped, are subject to a special and preferential control by the repair mechanisms. In this way, the presence of mutations and the appearance of cancer in the most active genes are prevented.

In order to determine how the repair mechanisms act in the whole human genome, the UAB scientists have studied lines of cells derived from the skin of healthy people and from patients deficient in the repair of DNA damage produced by solar radiation, a genetic disorder called xeroderma pigmentosa. In those affected by this disorder (popularised by the characters of the children in the film The Others), the repair mechanisms do not act when ultraviolet light shines on the skin cells, which causes them to have an accumulation of mutations and, therefore, an extremely high incidence of melanoma (skin cancer). The scientists have been able to observe how the repair of damage caused by ultraviolet rays is concentrated in the richest regions of the genome and, therefore, there is preferential repair of the most important part of the genome, called the transcriptome. By way of example, chromosome 19, the densest and most genetically active, shows high levels of repair, whereas in chromosome 4, one of the poorest in genes, there is practically no preferential repair of the mutations induced by ultraviolet light.

Octavi López Coronado | alfa

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>