Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into fragile X syndrome: Scientists identify possible link to RNAi

01.10.2002


Two independent research groups, led by Drs. Haruhiko Siomi (Institute for Genome Research, University of Tokushima, Japan) and Gregory Hannon (Cold Spring Harbor Laboratory, USA) have discovered that the Drosophila version of the human fragile X mental retardation protein associates with components of the RNAi pathway, suggesting that the molecular mechanism underlying fragile X syndrome may involve an RNAi-related process.



"It has been our feeling since we became involved in the field several years ago that only through an understanding of the mechanism of RNAi would we be able to understand the biological implications of this process," states Dr. Hannon.

Fragile X syndrome is the most common form of hereditary mental retardation, affecting 1 in 4000 males and 1 in 8000 females. Fragile X syndrome is the result of a genetic mutation at one end of the fragile X mental retardation 1 gene (FMR1) that causes the abnormal inactivation of the gene. It is known that the protein encoded by FMR1 -- the so-called fragile X mental retardation protein (FMRP) -- binds to RNA and is thought to regulate the expression of specific genes during neural development, but the mode of FMRP action in cells is yet to be defined.


This work provides some important clues.

Using Drosophila as a model organism, Drs. Siomi and Hannon and colleagues found that FMRP associates with RNAi-related cellular machinery. RNAi-induced gene silencing depends upon the introduction of double-stranded RNA, which is processed by Dicer enzymes into short pieces of double-stranded RNA. These short interfering RNAs, or siRNAs as they are known, are incorporated into an RNAi-induced silencing complex (RISC), which uses them as a guide to target and destroy complementary mRNAs, and thereby prevent synthesis of the encoded protein.

Both teams of researchers identified an association between FMRP, short double-stranded RNAs, and a previously identified subunit of RISC (a protein called AGO2); Dr. Siomi and colleagues also found that FMRP associates with the Dicer processing enzyme. These finding suggest that FMRP may function in an RNAi-related process to regulate the expression of its target genes at the level of translation (protein synthesis).

Further delineation of both the identity of FMRP target genes and how changes in their expression patterns can alter the neural landscape in such a way as to result in mental retardation are needed, but as Dr. Siomi explains, "the link between the fragile X syndrome as a phenotype and a possible role for defects in an RNAi-related apparatus through loss of the FMR1 protein will likely open up an entirely new field of molecular human genetics: defects in an RNAi-related apparatus that cause disease."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>