Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into fragile X syndrome: Scientists identify possible link to RNAi

01.10.2002


Two independent research groups, led by Drs. Haruhiko Siomi (Institute for Genome Research, University of Tokushima, Japan) and Gregory Hannon (Cold Spring Harbor Laboratory, USA) have discovered that the Drosophila version of the human fragile X mental retardation protein associates with components of the RNAi pathway, suggesting that the molecular mechanism underlying fragile X syndrome may involve an RNAi-related process.



"It has been our feeling since we became involved in the field several years ago that only through an understanding of the mechanism of RNAi would we be able to understand the biological implications of this process," states Dr. Hannon.

Fragile X syndrome is the most common form of hereditary mental retardation, affecting 1 in 4000 males and 1 in 8000 females. Fragile X syndrome is the result of a genetic mutation at one end of the fragile X mental retardation 1 gene (FMR1) that causes the abnormal inactivation of the gene. It is known that the protein encoded by FMR1 -- the so-called fragile X mental retardation protein (FMRP) -- binds to RNA and is thought to regulate the expression of specific genes during neural development, but the mode of FMRP action in cells is yet to be defined.


This work provides some important clues.

Using Drosophila as a model organism, Drs. Siomi and Hannon and colleagues found that FMRP associates with RNAi-related cellular machinery. RNAi-induced gene silencing depends upon the introduction of double-stranded RNA, which is processed by Dicer enzymes into short pieces of double-stranded RNA. These short interfering RNAs, or siRNAs as they are known, are incorporated into an RNAi-induced silencing complex (RISC), which uses them as a guide to target and destroy complementary mRNAs, and thereby prevent synthesis of the encoded protein.

Both teams of researchers identified an association between FMRP, short double-stranded RNAs, and a previously identified subunit of RISC (a protein called AGO2); Dr. Siomi and colleagues also found that FMRP associates with the Dicer processing enzyme. These finding suggest that FMRP may function in an RNAi-related process to regulate the expression of its target genes at the level of translation (protein synthesis).

Further delineation of both the identity of FMRP target genes and how changes in their expression patterns can alter the neural landscape in such a way as to result in mental retardation are needed, but as Dr. Siomi explains, "the link between the fragile X syndrome as a phenotype and a possible role for defects in an RNAi-related apparatus through loss of the FMR1 protein will likely open up an entirely new field of molecular human genetics: defects in an RNAi-related apparatus that cause disease."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>