Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist’s new experiment may vindicate Darwin

25.09.2002


Charles Darwin, the founder of the modern theory of evolution, was an avid proponent of sympatric speciation, the idea that a single species need not be geographically divided in order to evolve into two separate species. In the mid-20th century, however, certain vocal scientists convinced the scientific community that geographically isolating two halves of a population was a necessary factor in creating a new species. It wasn’t until the last few decades that modern biologists began to reexamine Darwin’s ideas to discover that he may have been quite right all along. Now the theory behind one such idea is undergoing its most exhaustive test yet at the University of Rochester.

James D. Fry, assistant professor of biology, is running fruit flies through a series of tests to see if a few, subtle changes in the flies’ environment could be enough to trigger the creation of a new species.

"For a long time there has been speculation that small differences in the environment coupled with small differences in the way organisms behave could lead to speciation without any other external factors," says Fry. "This is this first time this idea has been tested in the same way it might happen in nature. If we can get the flies to start exhibiting changes with these tests, then it’s very likely that it can happen easily in nature."



Similar trials tested speciation mechanisms that worked well in theory, but may not be very applicable to insects in the wild. Those experiments gave a choice of several of habitats, with only those flies choosing the most extreme habitats allowed to breed. This method imposes selection directly on the trait of habitat choice by weeding out those organisms that choose "incorrect" ones, whereas Fry’s experiment is designed specifically so that no fly’s habitat choice will automatically exclude it from breeding--a design he feels more closely approximates the natural world.

Fry lets the flies group together in a sort of lobby area before letting them out via two tunnels. One tunnel leads to a bright area and the other toward a darker area. Inevitably, some of the flies choose to go to the light and others to the darkness. Once in their new light or dark homes, Fry inspects the number of the bristles on each fly, acting like a sort of natural selection by removing sparsely bristled flies from the bright area and more densely bristled flies from the darker one. The bristles act as a marker that Fry can track over generations. The leftover flies in each habitat are then allowed to reproduce before being sent back to the lobby to make a habitat choice again.

Initially, Fry does not expect much correlation between bristle number and the individual’s preference for light or dark abodes, but after several dozen generations over the course of several months he expects to see that flies with fewer bristles tend toward the dark while multi-bristled ones head for the light. A fly that prefers the dark and happens to have few bristles will survive Fry’s "weeding out" process and will reproduce with another few-bristled dark-lover. Genetics being what they are, the couple is more likely to have offspring with fewer bristles and a hankering for a darker habitat. The couple may very well have some multi-bristlers or light-lovers, but those will never be able to reproduce because once everyone is sent back to the lobby, those offspring will head toward the habitat where their number of bristles will mark them for removal. The bristle number is being used as a sort of surrogate for a trait that might affect survival in nature, such as the camouflage coloring of a moth. This survivability variable was missing in previous studies since in them the only thing being selected for or against was the choice of habitat itself.

Eventually, after months of weeding and 50 to 60 generations, Fry hopes to see a correlation between brightness preference and bristle number. Already, a weak correlation is appearing after just 12 generations. If he finds that all the flies moving toward the light have few bristles, he’ll be fairly sure that they will never again mate with the dark-loving flies. If left in this artificial ecosystem, the flies will likely develop into completely separate species.

This kind of speciation mechanism relies on small differences in the environment that interact with the small differences in the behavior of individuals of a species. Individual preferences and small environmental differences are far more common than large geologic events such as floods or rising mountain ranges that are necessary for full geologic isolation so this model, if it is successful, could give biologists a new tool when piecing together the history of a species.

"Speciation without geologic isolation has been tested before, but the tests weren’t all that applicable to nature," says Fry. "If this test shows two separate populations of flies forming, it would add a new model of speciation to evolution--one that describes bugs, which account for a quarter of the species on earth."

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>