Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist’s new experiment may vindicate Darwin

25.09.2002


Charles Darwin, the founder of the modern theory of evolution, was an avid proponent of sympatric speciation, the idea that a single species need not be geographically divided in order to evolve into two separate species. In the mid-20th century, however, certain vocal scientists convinced the scientific community that geographically isolating two halves of a population was a necessary factor in creating a new species. It wasn’t until the last few decades that modern biologists began to reexamine Darwin’s ideas to discover that he may have been quite right all along. Now the theory behind one such idea is undergoing its most exhaustive test yet at the University of Rochester.

James D. Fry, assistant professor of biology, is running fruit flies through a series of tests to see if a few, subtle changes in the flies’ environment could be enough to trigger the creation of a new species.

"For a long time there has been speculation that small differences in the environment coupled with small differences in the way organisms behave could lead to speciation without any other external factors," says Fry. "This is this first time this idea has been tested in the same way it might happen in nature. If we can get the flies to start exhibiting changes with these tests, then it’s very likely that it can happen easily in nature."



Similar trials tested speciation mechanisms that worked well in theory, but may not be very applicable to insects in the wild. Those experiments gave a choice of several of habitats, with only those flies choosing the most extreme habitats allowed to breed. This method imposes selection directly on the trait of habitat choice by weeding out those organisms that choose "incorrect" ones, whereas Fry’s experiment is designed specifically so that no fly’s habitat choice will automatically exclude it from breeding--a design he feels more closely approximates the natural world.

Fry lets the flies group together in a sort of lobby area before letting them out via two tunnels. One tunnel leads to a bright area and the other toward a darker area. Inevitably, some of the flies choose to go to the light and others to the darkness. Once in their new light or dark homes, Fry inspects the number of the bristles on each fly, acting like a sort of natural selection by removing sparsely bristled flies from the bright area and more densely bristled flies from the darker one. The bristles act as a marker that Fry can track over generations. The leftover flies in each habitat are then allowed to reproduce before being sent back to the lobby to make a habitat choice again.

Initially, Fry does not expect much correlation between bristle number and the individual’s preference for light or dark abodes, but after several dozen generations over the course of several months he expects to see that flies with fewer bristles tend toward the dark while multi-bristled ones head for the light. A fly that prefers the dark and happens to have few bristles will survive Fry’s "weeding out" process and will reproduce with another few-bristled dark-lover. Genetics being what they are, the couple is more likely to have offspring with fewer bristles and a hankering for a darker habitat. The couple may very well have some multi-bristlers or light-lovers, but those will never be able to reproduce because once everyone is sent back to the lobby, those offspring will head toward the habitat where their number of bristles will mark them for removal. The bristle number is being used as a sort of surrogate for a trait that might affect survival in nature, such as the camouflage coloring of a moth. This survivability variable was missing in previous studies since in them the only thing being selected for or against was the choice of habitat itself.

Eventually, after months of weeding and 50 to 60 generations, Fry hopes to see a correlation between brightness preference and bristle number. Already, a weak correlation is appearing after just 12 generations. If he finds that all the flies moving toward the light have few bristles, he’ll be fairly sure that they will never again mate with the dark-loving flies. If left in this artificial ecosystem, the flies will likely develop into completely separate species.

This kind of speciation mechanism relies on small differences in the environment that interact with the small differences in the behavior of individuals of a species. Individual preferences and small environmental differences are far more common than large geologic events such as floods or rising mountain ranges that are necessary for full geologic isolation so this model, if it is successful, could give biologists a new tool when piecing together the history of a species.

"Speciation without geologic isolation has been tested before, but the tests weren’t all that applicable to nature," says Fry. "If this test shows two separate populations of flies forming, it would add a new model of speciation to evolution--one that describes bugs, which account for a quarter of the species on earth."

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>