Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist’s new experiment may vindicate Darwin

25.09.2002


Charles Darwin, the founder of the modern theory of evolution, was an avid proponent of sympatric speciation, the idea that a single species need not be geographically divided in order to evolve into two separate species. In the mid-20th century, however, certain vocal scientists convinced the scientific community that geographically isolating two halves of a population was a necessary factor in creating a new species. It wasn’t until the last few decades that modern biologists began to reexamine Darwin’s ideas to discover that he may have been quite right all along. Now the theory behind one such idea is undergoing its most exhaustive test yet at the University of Rochester.

James D. Fry, assistant professor of biology, is running fruit flies through a series of tests to see if a few, subtle changes in the flies’ environment could be enough to trigger the creation of a new species.

"For a long time there has been speculation that small differences in the environment coupled with small differences in the way organisms behave could lead to speciation without any other external factors," says Fry. "This is this first time this idea has been tested in the same way it might happen in nature. If we can get the flies to start exhibiting changes with these tests, then it’s very likely that it can happen easily in nature."



Similar trials tested speciation mechanisms that worked well in theory, but may not be very applicable to insects in the wild. Those experiments gave a choice of several of habitats, with only those flies choosing the most extreme habitats allowed to breed. This method imposes selection directly on the trait of habitat choice by weeding out those organisms that choose "incorrect" ones, whereas Fry’s experiment is designed specifically so that no fly’s habitat choice will automatically exclude it from breeding--a design he feels more closely approximates the natural world.

Fry lets the flies group together in a sort of lobby area before letting them out via two tunnels. One tunnel leads to a bright area and the other toward a darker area. Inevitably, some of the flies choose to go to the light and others to the darkness. Once in their new light or dark homes, Fry inspects the number of the bristles on each fly, acting like a sort of natural selection by removing sparsely bristled flies from the bright area and more densely bristled flies from the darker one. The bristles act as a marker that Fry can track over generations. The leftover flies in each habitat are then allowed to reproduce before being sent back to the lobby to make a habitat choice again.

Initially, Fry does not expect much correlation between bristle number and the individual’s preference for light or dark abodes, but after several dozen generations over the course of several months he expects to see that flies with fewer bristles tend toward the dark while multi-bristled ones head for the light. A fly that prefers the dark and happens to have few bristles will survive Fry’s "weeding out" process and will reproduce with another few-bristled dark-lover. Genetics being what they are, the couple is more likely to have offspring with fewer bristles and a hankering for a darker habitat. The couple may very well have some multi-bristlers or light-lovers, but those will never be able to reproduce because once everyone is sent back to the lobby, those offspring will head toward the habitat where their number of bristles will mark them for removal. The bristle number is being used as a sort of surrogate for a trait that might affect survival in nature, such as the camouflage coloring of a moth. This survivability variable was missing in previous studies since in them the only thing being selected for or against was the choice of habitat itself.

Eventually, after months of weeding and 50 to 60 generations, Fry hopes to see a correlation between brightness preference and bristle number. Already, a weak correlation is appearing after just 12 generations. If he finds that all the flies moving toward the light have few bristles, he’ll be fairly sure that they will never again mate with the dark-loving flies. If left in this artificial ecosystem, the flies will likely develop into completely separate species.

This kind of speciation mechanism relies on small differences in the environment that interact with the small differences in the behavior of individuals of a species. Individual preferences and small environmental differences are far more common than large geologic events such as floods or rising mountain ranges that are necessary for full geologic isolation so this model, if it is successful, could give biologists a new tool when piecing together the history of a species.

"Speciation without geologic isolation has been tested before, but the tests weren’t all that applicable to nature," says Fry. "If this test shows two separate populations of flies forming, it would add a new model of speciation to evolution--one that describes bugs, which account for a quarter of the species on earth."

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>