Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in ’micro’ RNA exploring process of life

20.09.2002


Researchers at Oregon State University have made an important advance in the understanding of "micro-RNA" molecules, which are tiny bits of genetic material that were literally unknown 10 years ago but now represent one of the most exciting new fields of study in biology.



The findings will be reported Friday in the journal Science.

They reveal for the first time a new mechanism by which micro-RNA can stop the function of messenger-RNA by literally cutting it in half, interfering with the normal function of specific messenger RNAs in gene expression.


This "expression" of genes that code for essential proteins is ultimately what controls whether a cell turns into a lung, liver, brain or other cell. Understanding what activates this process – or stops it – is a key to understanding the biological process of life itself, and forms the foundation for advances in medicine, agriculture and other fields.

On this frontier of biology, experts say, the most intriguing new component is micro-RNA, a minuscule type of regulatory molecule that had seemed insignificant even in the extraordinarily tiny, microscopic world of cell biology.

The first micro-RNA, in fact, was only discovered in 1993 and at the time was thought to be a biological oddity in worms. A couple hundred have since been discovered in both plants and animals. But it has only been in just the past few months that scientists working in this area have come to understand the potentially profound importance of micro-RNA.

"For a long time, people really did not know that these micro-RNAs were even there," said James Carrington, professor and director of the OSU Center for Gene Research and Biotechnology. "They were under the radar, and observations of them were limited by our technology. But as we learn more about these regulatory molecules, we’re beginning to understand the scope of their biological importance. In molecular biology, micro-RNAs are clearly one of the top two or three discoveries of the past decade."

Every normal cell in complex organisms, such as plants, flies and humans, has a complete copy of the DNA for the entire organism, some 15,000 to 35,000 genes that collectively are thought of as the genetic blueprint for life. But to serve as certain types of cells, such as brain in humans or roots in plants, only a much smaller number of genes within each cell are actually "expressed," or allowed to create the proteins that perform these separate life functions.

"A key focus in biology for a long time has been what controls gene expression," Carrington said.

It is well understood, Carrington said, that two of the key steps between DNA and a functional cell are the processes of transcription and translation. In transcription, single-stranded "messenger RNA" molecules that correspond to each expressed gene are produced. And in translation, the messenger RNA is decoded, resulting in the production of a protein made from some combination of 20 amino acids.

"This is a very complex series of biological processes that requires hundreds of proteins and other factors," Carrington said. "And we’re now also learning the role of micro-RNA in controlling expression of some important genes."

Micro-RNAs are actually produced by the transcription of tiny genes, in regions of the genome that were previously thought to be vacant or useless DNA. However, unlike messenger RNAs, micro-RNAs are not translated to produce proteins. Instead, researchers are finding that these micro-RNAs have critical functions in controlling the process of gene expression.

In some recent studies, other scientists found that micro-RNAs can bind to specific messenger RNAs to block the translation or decoding process. In the latest advance made by the OSU researchers, micro-RNAs in the plant Arabidopsis thaliana were found to destroy messenger RNAs instead of blocking its function, by literally cutting it in half.

"Much of our understanding of cell biology is related to this area we call negative regulation, or the processes that stops genes from being expressed," Carrington said. "Anything that improves our knowledge of this process could be quite significant."

For one thing, Carrington said, micro-RNAs might be intimately involved in the normal function of stem cells, those biologically unique cells that, when reproducing, can produce either more stem cells or begin a line of cells that is differentiated into something else, a brain, lung or liver cell.

"It’s very important that we learn how cells differentiate and grow normally," Carrington said. "Just about everything in the human body has a genetic component. Genetic abnormalities relate to birth and developmental defects, susceptibility to disease, misregulation of genes. And these same processes are also at work in all other life forms, including plants, and new findings could be applied to crop biotechnology or even traditional plant breeding."

Continued research, Carrington said, will almost undoubtedly find human genetic defects that can be traced to dysfunction of micro-RNAs.

This broad area of research, officials say, has such promise that major new studies are being developed across the nation.

OSU was recently the recipient of a 4-year, $1.7 million grant from the National Science Foundation to study micro-RNAs in Arabidopsis, a plant that works well as a model for genetic research, and the researchers will try to identify the functional messenger RNA targets of different micro-RNAs.

Scientists expect that some of the life processes controlled by micro-RNAs in plants will have been conserved across millions of years of evolution and operate the same way in animals, including humans.


By David Stauth, 541-737-0787

James Carrington | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>