Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify first genomic blueprint of cancer preventive compound found in broccoli


Discovery could lead to the identification of other cancer-preventing compounds

Using gene chip technology, researchers at the Johns Hopkins Bloomberg School of Public Health have identified the blueprint of genes and enzymes in the body that enable sulforaphane, a compound found in broccoli and other vegetables, to prevent cancer and remove toxins from cells. The discovery was made using a "gene chip" that allows researchers to monitor the complex interactions of thousands of proteins on a whole genome rather than one at time. The study is published in the September 15, 2002 issue of the journal Cancer Research, and is the first gene profiling analysis of a cancer-preventing agent using this approach. The researchers believe the findings provide a better understanding of the body’s defense mechanisms and could lead to the identification of other cancer-preventing food compounds and strategies.

For the study, the researchers analyzed the downstream genomic targets of the transcription factor Nrf2 (Nuclear factor E2 p45-related factor 2), which scientists previously knew was activated in response to anticancer agents such as sulforaphane. The transcription factor, Nrf2, in response to cancer preventive agents, turns on genes and pathways inside the cell, whose products help in ridding the body of carcinogens.

"Carcinogens mutate the DNA in genes, which leads to cancer. Now, we know that sulforaphane present in broccoli can turn an extensive network of genes and pathways, which can annihilate a broad spectrum of carcinogens," said Shyam Biswal, PhD, assistant professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health.

"With this study we’ve identified the specific genes regulated in response to a promising chemopreventive agent, which tells us how the process of cancer chemoprevention is occurring and provides us with a novel strategy for evaluating potential cancer preventive agents in future," explained Dr. Biswal.

Dr. Biswal and his colleagues studied the gene profile of small intestines of mice to identify the genes regulated by Nrf2. The researchers treated groups of mice with sulforaphane and compared the effects to control groups in which the Nrf2 gene was knocked off. "In summary, this study expands the scope of the positive, coordinated regulation of a wide variety of cellular defense proteins by Nrf2 and underscores the potential of Nrf2 activation as a strategy for achieving cancer chemoprevention," said Dr. Biswal.

Tim Parsons | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>