Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast Cancer Gene Repairs Damaged DNA

13.09.2002


Structural studies of the protein produced by the BRCA2 gene, which is implicated in the development of hereditary breast and ovarian cancers, reveal that the protein is intimately involved in repairing damaged DNA.



DNA-repair proteins perform a vital function and protect against potentially catastrophic events such as cancer-causing mutations or chromosome rearrangements, which are hallmarks of tumor cells.

Howard Hughes Medical Institute investigator Nikola P. Pavletich and his colleagues at Memorial Sloan-Kettering Cancer Center used x-ray crystallography to obtain “molecular snapshots” of the BRCA2 protein. The images produced by Pavletich’s team show that BRCA2 is capable of binding to DNA, a conclusion that is supported by the group’s biochemical experiments. The research was published in the September 13, 2002, issue of the journal Science.


The scientists were investigating the role of BRCA2 in homologous recombination, which is one of the ways that cells repair broken chromosomes. In this type of DNA repair, broken chromosomes are fixed by using the information from a sister chromosome as a template and “splint” to guide repair. This type of DNA repair is accurate and is the optimal mode of repair in dividing cells. Prior to the studies by Pavletich and his colleagues, BRCA2 was believed to play only an indirect regulatory role in DNA repair.

“BRCA2 had been previously implicated in the control of homologous recombination, although its precise role in this process was unknown,” said HHMI investigator Stephen J. Elledge, who is at Baylor College of Medicine. “The significance of the structural studies of BRCA2 by Pavletich’s group is that they provide evidence for a direct and unexpected biochemical role for BRCA2 in the enzymology of homologous recombination itself. It was an elegant study that will forever change the way we think about BRCA2 and its role in breast cancer.” Elledge authored an accompanying article in Science that discusses the implications of the findings by Pavletich and his colleagues.

Pavletich’s team encountered several major technical hurdles, the first of which involved producing a segment of the BRCA2 protein — called the C-terminal end. “We chose this fragment because of evidence — based on its amino acid sequence, on the fact that it is conserved in many organisms, and on the fact that it is often mutated in tumors — that it carries out an important function in homologous-recombination-mediated repair,” said Pavletich.

Producing this large protein fragment of BRCA2 and crystallizing it for x-ray crystallographic studies was a formidable challenge. Lead author Haijuan Yang got a break when she identified a “companion” protein called DSS1 that bound to the BRCA2 fragment and made it amenable to crystallization.

The scientists then used x-ray crystallography to determine the detailed structure of the BRCA2 fragment. In this process, x-ray beams are directed through purified crystals of a protein, and the resulting patterns of diffraction are analyzed to deduce the protein’s structure.

“Once we analyzed the structure and compared it with known protein structures, it had domains that looked familiar,” said Pavletich. “These domains, called oligonucleotide binding folds, are found in proteins known to bind single-stranded DNA.”

The scientists then conducted biochemical binding tests in vitro using the BRCA2 domain, which revealed that the BRCA2 fragment did indeed bind single-stranded DNA. This finding was confirmed by additional studies in which the researchers crystallized the BRCA2 fragment bound to single-stranded DNA. According to Pavletich, the experiments provided strong evidence that BRCA2 is intimately involved with DNA binding in the repair process.

The researchers discovered that another domain in the BRCA2 fragment binds double-stranded DNA, although they have not yet established conclusively that the domain by itself binds double-stranded DNA.

Pavletich’s group also showed that BRCA2 stimulates the activity of an enzyme called RAD51 recombinase, a key component of the DNA-repair machinery. “Our observations taken together with other data, suggest that BRCA2 is what recognizes double-strand breaks,” said Pavletich. “When a cell encounters a double-strand break, it chews up that break to produce single-stranded DNA at the end of double-stranded DNA. And this is what we think is recognized by BRCA2, since it has both single-stranded and double-stranded DNA binding activity.

“We were surprised at this direct role of BRCA2, because among scientists in the field, [BRCA2] was thought to be the regulator of RAD51. This function of BRCA2 was more in line with BRCA1, which is thought to be a signaling protein in the process,” said Pavletich. Mutations in BRCA1 also have been implicated in the development of breast and other cancers.

Pavletich added that “our findings don’t reveal any obvious treatment strategies, but as with all basic science, studying how a process works, and how it malfunctions in cancer brings us closer to understanding the process of tumorigenesis.” Thus, he said, his laboratory plans detailed studies of how the DNA-binding domain of BRCA2 works in concert with the separate domain that binds to RAD51, in triggering the DNA-repair machinery.

Jim Keeley | alfa
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>