Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR scan shows if precious wine is spoiled

28.08.2002


Some bottles of wine are worth thousands of dollars. But if oxygen has leaked past the cork, it could be thousand-dollar vinegar -- and there’s no way to tell without opening the bottle. Now chemists at the University of California, Davis, can check an unopened bottle for spoilage using nuclear magnetic resonance (NMR), the same technology used for medical MRI scans.



Natural bacteria in wine use oxygen from the air to turn alcohol into vinegar, or acetic acid. If a wine bottle is securely corked, the small amount of air in the bottle is quickly used up. If the cork is leaky and air gets in, the vinegar flavor eventually becomes strong enough to make the wine undrinkable.

NMR scans of wine show distinct peaks for water, ethanol and acetic acid, said Matthew Augustine, an associate professor of chemistry at UC Davis. That means you can measure the amount of each component,


Augustine and graduate student April Weekley designed equipment to put whole bottles of wine into one of their powerful magnets, so that they could scan a whole bottle without opening it. The instrument can detect acetic acid at less than one-tenth the amount that would spoil a wine, Augustine said.

They tested bottles of Cabernet Sauvignon wine from the UC Davis Department of Viticulture and Enology’s collection. Bottles from 1950, 1960 and 1968 were spoiled, while bottles from 1956, 1970 and 1977 were likely still drinkable, Augustine said. Although the oldest wine had the highest level of acetic acid, there was no relationship between age and alcohol content or likelihood of being spoiled. Examining the corks for apparent leaks also did not give useful clues about the quality of the wine, he said.

Additional Contact Information:
Matt Augustine, Chemistry,
530-754-7550,
augustine@chem.ucdavis.edu

Augustine thinks that the technology, for which a patent has been filed, could be useful for auction houses and buyers specializing in high-end wines. It could also be adapted to look at other components of wine responsible for flavor, color, aging qualities and potential health benefits.

Andy Fell | EurekAlert!

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>