Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Species of Nematode Found Damaging Pine Seedlings

28.08.2002


USDA Forest Service plant pathologists have discovered a new cause of damage to loblolly pine seedlings grown in the South - needle nematodes. In the July 2002 issue of Plant Disease, pathologists Stephen Fraedrich (SRS Insects and Diseases of Southern Forests unit in Athens, GA) and Michelle Cram (Forest Health Protection Program, Region 8) report on finding a previously undescribed species of nematode stunting the growth of pine seedlings in a Georgia nursery.



In 1998, a three-year study was initiated in a southern Georgia nursery to evaluate treatments to replace methyl bromide (MC33), an ozone-depleting soil fumigant scheduled for phase-out by 2005. During the third year of the study, patches of stunted seedlings began to appear in different sections of the nursery fields. The needles of the stunted seedlings were yellowed, and the root systems were much smaller than normal, with few lateral or fine roots.

Soil samples from the affected areas were sent to a nematode laboratory, and soil and roots were also examined for fungus pathogens, but the cause of the stunting could not be determined. When they examined unwashed pine seedling roots under a dissecting microscope, Fraedrich and Cram found large needle nematodes of the Longidorus genus that had escaped the notice of the nematode laboratory. Growth chamber experiments on container seedlings inoculated with Longidorus resulted in root damage similar to that in the stunted field seedlings.


Finding Longidorus was a surprise: the nematodes have been identified in soil from areas where southern pines are grown, but Fraedrich and Cram could not find any published reports of needle nematodes damaging the roots of loblolly or other southern pine species. The USDA-ARS Nematology Laboratory in Maryland was unable to identify the species of Longidorus found in Georgia: the nematode is presently listed as "undescribed" and believed to be a new species.

The new Longidorus is seven to eight millimeters long - quite large for a plant-parasitic nematode - and occurs in relatively small numbers around the roots of stunted pine seedlings. These factors help explain why the first nematode laboratory did not find Longidorus in the soil samples sent from the affected areas. Extracting large nematodes from soil samples requires specific techniques not routinely used by nematode laboratories.

"Damage to pine seedlings by needle nematodes is a previously undescribed problem in southern nurseries," said Fraedrich. "Nursery managers and pest management specialists who suspect nematode damage should alert nematode testing laboratories to examine soil samples specifically for Longidorus."

The full text of the Plant Disease article is available at:

http://www.srs.fs.fed.us/pubs/viewpub.jsp?index=4444.

For more information: Stephen Fraedrich at (706-559-4273) or sfraedrich@fs.fed.us.

Stephen Fraedrich | EurekAlert!
Further information:
http://www.srs.fs.fed.us/pubs/viewpub.jsp?index=4444

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>