Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding sheds new light into mysterious process of cell movement during development

15.08.2002


Biologists at Vanderbilt and the University of Missouri have uncovered what could be a major clue into the mysterious molecular processes that direct cells to the correct locations within a developing embryo.



Understanding the molecular basis of these processes, and how they can go wrong, may ultimately lead to treatments for many birth defects, such as spina bifida that afflicts between 800 to 1,000 babies born each year in the United States.

Writing in the August issue of the scientific journal Nature Cell Biology, the researchers report the discovery that a single protein facilitates the movements of cells within the developing embryo of the zebrafish, a small fish that has become an important animal model for studying the development of vertebrates, animals with backbones.


The researchers report that this protein plays an essential role in directing the migration of cells within the spherical egg to the head-tail axis where the body is beginning to take shape. They also found that disruption of the same protein inhibits the normal migration of nerve cells within the developing zebrafish brain, a type of motion found in human brain development.

"A great deal is known about the movement of the projections that neurons send out to connect with other neurons, but very little is known about how neurons move from one place to another," says Lilianna Solnica-Krezel, the associate professor of biological sciences at Vanderbilt who led the study with Anand Chandrasekhar, assistant professor of biological sciences at the University of Missouri, Columbia.

Zebrafish have characteristics that make them ideal for developmental research. They lay eggs that are transparent and develop outside the body, making them particularly easy to study. Development is also rapid, proceeding from fertilization to hatching in only three days. The fish are also easy and inexpensive to raise, so scientists can keep thousands of them in a laboratory. The zebrafish genome is currently being sequenced, which allows researchers to employ the powerful tools of genomics to unravel the complex molecular processes involved in development.

One of these methods is to examine the impact of specific mutations. In this case, Solnica-Krezel and her colleagues were exploring what takes place in a mutant called trilobite. (It was given this name because the developing egg forms a pattern shaped like one of these prehistoric marine creatures.) During an early stage of development called gastrulation, the cells begin converging from all sides of the spherical egg to the embryonic axis where the body begins to form. What begins as a disordered, chaotic motion changes into an orderly movement. As this happens the cells also change from a round to an elongated, spindle shape.

"It’s something like a mob transforming into an army," says Solnica-Krezel.

Her research group discovered that the trilobite mutations prevent the army from forming. Cell motions continue to be disordered and do not develop the same sense of direction and purpose in the mutant as they do in normal embryos. As a result, trilobite’s development is stunted. The scientists determined that the mutations disrupt the activity of a specific membrane protein, called either Strabismus or Van Gogh.

The same protein has previously been identified in the development of the fruit fly, Drosophila melanogaster, where it affects the orientation of cells that form the fly’s wings and compound eyes. A closely related protein found in mice is implicated in malformation of the neural tube, the tubular structure that develops into the brain and spinal cord.

Somewhat later in zebrafish development, a number of motor neurons move from one part of the brain to another. "We don’t understand why they move because they can form the connections they need from their original location," says Solnica-Krezel. But Chandrasekhar and his Missouri team discovered that this movement does not take place in trilobite embryos.

In order to determine whether the neurons’ failure to migrate was due to factors within the cell or the extracellular environment, the researchers transplanted trilobite neurons in the brains of normal embryos and normal neurons in trilobite brains. They found that none of the normal motor neurons migrated when placed in a trilobite brain, whereas a third of the trilobite neurons migrated when placed in normal brains. This led the scientists to conclude that the Strabismus/Van Gogh protein must have both cellular and extracellular effects.

With further study, the researchers determined that the neurons’ method of movement was similar to that of an amoeba: they extend their bodies in the direction they want to move and retract them from the opposite side. By labeling the nerve cells with fluorescent protein, the biologists determined that the trilobite cells moved much slower and their movements were more random in nature than normal neurons.

The results of their various tests suggest that the protein Strabismus/Van Gogh acts independently in mediating neuron movement. If this proves to be the case, then it provides "an entry point to elucidate the molecular basis of this class of neuronal migration," they conclude in the article.


Solnica-Krezel’s research team included graduate student Florence Marlow along with research associates Jason R. Jessen, Jacek Topczewski and Diane S. Sepich. Graduate student Stephanie Bingham worked with Chandrasekhar. The research was funded by the National Institutes of Health, the National Science Foundation and the Pew Scholars Program in the Biomedical Sciences.

David F. Salisbury | EurekAlert!
Further information:
http://exploration.vanderbilt.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>