Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding sheds new light into mysterious process of cell movement during development

15.08.2002


Biologists at Vanderbilt and the University of Missouri have uncovered what could be a major clue into the mysterious molecular processes that direct cells to the correct locations within a developing embryo.



Understanding the molecular basis of these processes, and how they can go wrong, may ultimately lead to treatments for many birth defects, such as spina bifida that afflicts between 800 to 1,000 babies born each year in the United States.

Writing in the August issue of the scientific journal Nature Cell Biology, the researchers report the discovery that a single protein facilitates the movements of cells within the developing embryo of the zebrafish, a small fish that has become an important animal model for studying the development of vertebrates, animals with backbones.


The researchers report that this protein plays an essential role in directing the migration of cells within the spherical egg to the head-tail axis where the body is beginning to take shape. They also found that disruption of the same protein inhibits the normal migration of nerve cells within the developing zebrafish brain, a type of motion found in human brain development.

"A great deal is known about the movement of the projections that neurons send out to connect with other neurons, but very little is known about how neurons move from one place to another," says Lilianna Solnica-Krezel, the associate professor of biological sciences at Vanderbilt who led the study with Anand Chandrasekhar, assistant professor of biological sciences at the University of Missouri, Columbia.

Zebrafish have characteristics that make them ideal for developmental research. They lay eggs that are transparent and develop outside the body, making them particularly easy to study. Development is also rapid, proceeding from fertilization to hatching in only three days. The fish are also easy and inexpensive to raise, so scientists can keep thousands of them in a laboratory. The zebrafish genome is currently being sequenced, which allows researchers to employ the powerful tools of genomics to unravel the complex molecular processes involved in development.

One of these methods is to examine the impact of specific mutations. In this case, Solnica-Krezel and her colleagues were exploring what takes place in a mutant called trilobite. (It was given this name because the developing egg forms a pattern shaped like one of these prehistoric marine creatures.) During an early stage of development called gastrulation, the cells begin converging from all sides of the spherical egg to the embryonic axis where the body begins to form. What begins as a disordered, chaotic motion changes into an orderly movement. As this happens the cells also change from a round to an elongated, spindle shape.

"It’s something like a mob transforming into an army," says Solnica-Krezel.

Her research group discovered that the trilobite mutations prevent the army from forming. Cell motions continue to be disordered and do not develop the same sense of direction and purpose in the mutant as they do in normal embryos. As a result, trilobite’s development is stunted. The scientists determined that the mutations disrupt the activity of a specific membrane protein, called either Strabismus or Van Gogh.

The same protein has previously been identified in the development of the fruit fly, Drosophila melanogaster, where it affects the orientation of cells that form the fly’s wings and compound eyes. A closely related protein found in mice is implicated in malformation of the neural tube, the tubular structure that develops into the brain and spinal cord.

Somewhat later in zebrafish development, a number of motor neurons move from one part of the brain to another. "We don’t understand why they move because they can form the connections they need from their original location," says Solnica-Krezel. But Chandrasekhar and his Missouri team discovered that this movement does not take place in trilobite embryos.

In order to determine whether the neurons’ failure to migrate was due to factors within the cell or the extracellular environment, the researchers transplanted trilobite neurons in the brains of normal embryos and normal neurons in trilobite brains. They found that none of the normal motor neurons migrated when placed in a trilobite brain, whereas a third of the trilobite neurons migrated when placed in normal brains. This led the scientists to conclude that the Strabismus/Van Gogh protein must have both cellular and extracellular effects.

With further study, the researchers determined that the neurons’ method of movement was similar to that of an amoeba: they extend their bodies in the direction they want to move and retract them from the opposite side. By labeling the nerve cells with fluorescent protein, the biologists determined that the trilobite cells moved much slower and their movements were more random in nature than normal neurons.

The results of their various tests suggest that the protein Strabismus/Van Gogh acts independently in mediating neuron movement. If this proves to be the case, then it provides "an entry point to elucidate the molecular basis of this class of neuronal migration," they conclude in the article.


Solnica-Krezel’s research team included graduate student Florence Marlow along with research associates Jason R. Jessen, Jacek Topczewski and Diane S. Sepich. Graduate student Stephanie Bingham worked with Chandrasekhar. The research was funded by the National Institutes of Health, the National Science Foundation and the Pew Scholars Program in the Biomedical Sciences.

David F. Salisbury | EurekAlert!
Further information:
http://exploration.vanderbilt.edu

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>