Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals how cells protect against stress

15.08.2002


Stress happens, and over the eons all species of living things have evolved all sorts of ways to cope. Now, new research has revealed that organisms as diverse as humans and plants share a common set of stress-protection maneuvers that are choreographed by the metabolic machinery in their cells.



The research led by Sarah M. Assmann, the Waller Professor of Plant Biology at Penn State, will be published in the 15 August 2002 issue of the journal Nature.

"We have shown, in more detail than was known before, the chain of cellular events that begins with an environmental stress and ends with an organism’s protective response to that stress," Assmann says. "We also have discovered some previously unknown steps in that process."


Among the team’s discoveries is that one cellular-processing step that originally was discovered in human cells also occurs in plant cells. "A human autoimmune disease and a disorder associated with breast cancer are known to result from a defect in this process, " Assmann says.

Specifically, the Assmann team studied a process triggered in plants by abscisic acid (ABA), a hormone that plants produce when they are stressed by drought. Assmann’s lab discovered two years ago that the ABA hormone activates a type of protein called a kinase, which attaches phosphate groups to other proteins. The resulting cascade of events ultimately causes closure of microscopic pores on the plants’ leaves in an effort to limit the loss of moisture.

In the present research, Assmann’s group found that one of the targets of this ABA-activated kinase is a specific protein that binds RNA. Assmann’s group further discovered that the ABA-induced phosphorylation of the RNA-binding protein caused its association with the RNA encoding dehydrin, a protein known to confer stress-resistance to plant cells.

Scientist have long known that, in both plant and animal cells, proteins designed to do particular jobs are produced from the genetic blueprint contained in the DNA inside the nucleus. In a process known as transcription, nuclear machines first copy the genetic code from the DNA molecules into a "transcribed" RNA molecule and then moves the RNA from the nucleus into the cell’s cytoplasm, where it is "translated" into a protein. But Assmann and other researchers are discovering that RNA-binding proteins mediate a lot of cut-and-paste processing of the newly transcribed "raw" RNA before it is remodeled into "messenger" RNA and allowed to leave the nucleus carrying the blueprint for making a protein.

"A new paradigm that our research suggests is that the ABA hormone regulates the protein complement of a cell not only by controlling the initial transcription process but also by controlling the proteins involved in post-transcriptional remodeling of RNA molecules, including RNAs that encode stress-protective proteins," Assmann explains.

Another of Assmann’s discoveries is that ABA regulates the formation of mysterious islands within the cell’s nucleus called "nuclear speckles." Scientists do not yet know a lot about nuclear speckles in plants, but they do know that nuclear speckles in human cells contain proteins associated with the remodeling of RNA.

By expressing in plant cells the RNA-binding protein with a green fluorescent tag attached, Assmann’s group was able to observe the localization of this protein within the living cell. As she watched through the microscope Assmann observed, for the first time, that ABA induced the relocation of the RNA-binding protein within the nucleus. Upon treatment of the plant tissue with ABA, the fluorescently-tagged RNA-binding proteins quickly gathered together into nuclear speckles that looked like green-glowing islands inside the cell’s nucleus. "To our knowledge, such hormonally induced aggregation of RNA-remodeling proteins into nuclear speckles has not previously been observed either in plant or in animal cells," Assmann says.

In addition to giving researchers these and other important details about the processes that produce protective proteins, Assmann’s research also eventually could give farmers more control over the moisture content of their crops." Our research points to a gene-regulation process that, if turned off after a crop matures, would assure that the pores on a plant’s leaves would stay open, allowing it to dry more quickly in the field," Assmann explains. "In a crop like feed corn, for example, such control would be economically beneficial to farmers, who get a better price for their crop if it has reached its optimal moisture content."


In addition to Assmann, other members of the research team include Jiaxu Li, lead postdoctoral associate, postdoctoral associates Sona Pandey and Carl K.-Y. Ng, Ken-ichiro-Shimazaki and Toshinori Kinoshita at Kyushu University (Japan), and Steven P. Gygi of Harvard Medical School.

This research was supported by the National Science Foundation. Photos: high resolution images for publication are available to reporters from a link at http://www.science.psu.edu/alert/Assmann8-2002.htm

Additional Contact Information:
Sarah M. Assmann: phone 814-863-9579, email sma3@psu.edu

Barbara K. Kennedy | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>