Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals how cells protect against stress

15.08.2002


Stress happens, and over the eons all species of living things have evolved all sorts of ways to cope. Now, new research has revealed that organisms as diverse as humans and plants share a common set of stress-protection maneuvers that are choreographed by the metabolic machinery in their cells.



The research led by Sarah M. Assmann, the Waller Professor of Plant Biology at Penn State, will be published in the 15 August 2002 issue of the journal Nature.

"We have shown, in more detail than was known before, the chain of cellular events that begins with an environmental stress and ends with an organism’s protective response to that stress," Assmann says. "We also have discovered some previously unknown steps in that process."


Among the team’s discoveries is that one cellular-processing step that originally was discovered in human cells also occurs in plant cells. "A human autoimmune disease and a disorder associated with breast cancer are known to result from a defect in this process, " Assmann says.

Specifically, the Assmann team studied a process triggered in plants by abscisic acid (ABA), a hormone that plants produce when they are stressed by drought. Assmann’s lab discovered two years ago that the ABA hormone activates a type of protein called a kinase, which attaches phosphate groups to other proteins. The resulting cascade of events ultimately causes closure of microscopic pores on the plants’ leaves in an effort to limit the loss of moisture.

In the present research, Assmann’s group found that one of the targets of this ABA-activated kinase is a specific protein that binds RNA. Assmann’s group further discovered that the ABA-induced phosphorylation of the RNA-binding protein caused its association with the RNA encoding dehydrin, a protein known to confer stress-resistance to plant cells.

Scientist have long known that, in both plant and animal cells, proteins designed to do particular jobs are produced from the genetic blueprint contained in the DNA inside the nucleus. In a process known as transcription, nuclear machines first copy the genetic code from the DNA molecules into a "transcribed" RNA molecule and then moves the RNA from the nucleus into the cell’s cytoplasm, where it is "translated" into a protein. But Assmann and other researchers are discovering that RNA-binding proteins mediate a lot of cut-and-paste processing of the newly transcribed "raw" RNA before it is remodeled into "messenger" RNA and allowed to leave the nucleus carrying the blueprint for making a protein.

"A new paradigm that our research suggests is that the ABA hormone regulates the protein complement of a cell not only by controlling the initial transcription process but also by controlling the proteins involved in post-transcriptional remodeling of RNA molecules, including RNAs that encode stress-protective proteins," Assmann explains.

Another of Assmann’s discoveries is that ABA regulates the formation of mysterious islands within the cell’s nucleus called "nuclear speckles." Scientists do not yet know a lot about nuclear speckles in plants, but they do know that nuclear speckles in human cells contain proteins associated with the remodeling of RNA.

By expressing in plant cells the RNA-binding protein with a green fluorescent tag attached, Assmann’s group was able to observe the localization of this protein within the living cell. As she watched through the microscope Assmann observed, for the first time, that ABA induced the relocation of the RNA-binding protein within the nucleus. Upon treatment of the plant tissue with ABA, the fluorescently-tagged RNA-binding proteins quickly gathered together into nuclear speckles that looked like green-glowing islands inside the cell’s nucleus. "To our knowledge, such hormonally induced aggregation of RNA-remodeling proteins into nuclear speckles has not previously been observed either in plant or in animal cells," Assmann says.

In addition to giving researchers these and other important details about the processes that produce protective proteins, Assmann’s research also eventually could give farmers more control over the moisture content of their crops." Our research points to a gene-regulation process that, if turned off after a crop matures, would assure that the pores on a plant’s leaves would stay open, allowing it to dry more quickly in the field," Assmann explains. "In a crop like feed corn, for example, such control would be economically beneficial to farmers, who get a better price for their crop if it has reached its optimal moisture content."


In addition to Assmann, other members of the research team include Jiaxu Li, lead postdoctoral associate, postdoctoral associates Sona Pandey and Carl K.-Y. Ng, Ken-ichiro-Shimazaki and Toshinori Kinoshita at Kyushu University (Japan), and Steven P. Gygi of Harvard Medical School.

This research was supported by the National Science Foundation. Photos: high resolution images for publication are available to reporters from a link at http://www.science.psu.edu/alert/Assmann8-2002.htm

Additional Contact Information:
Sarah M. Assmann: phone 814-863-9579, email sma3@psu.edu

Barbara K. Kennedy | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>