Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice become first animals to produce other species’ sperm

15.08.2002


Find has implications for preservation of endangered species, livestock



With pinhead-sized grafts of testicular tissue from newborn mammals, scientists at the University of Pennsylvania have induced mice to produce fully functional sperm from evolutionarily distant species. The result has important implications for preserving the germ lines of critically endangered species as well as prized livestock.
The study, in which male mice produced functional gametes first from other mice and then from pigs and goats, is reported in the Aug. 15 issue of the journal Nature.

"This is the first report of complete spermatogenesis from tissue grafted across species," said Ina Dobrinski, assistant professor of large animal reproduction in Penn’s School of Veterinary Medicine. "The production of functionally competent sperm from three different mammals indicates that testis tissue grafting may be applicable to a wide variety of species."



The work also yielded the first functional sperm from immature reproductive tissue, meaning sperm could be derived even from individuals that have not reached sexual maturity. Unlike cryonic approaches to preservation, testis tissue grafting offers a potentially inexhaustible supply of male gametes.

Mice with the testis grafts could aid studies of the effects of drugs -- including potential male contraceptives -- on sperm production. The mice also give scientists a valuable model to better understand testicular function, many aspects of which remain murky.

Dobrinski and colleagues grafted as much as one cubic millimeter of tissue from the testes of newborn mice, goats and pigs onto the backs of mice. As many as eight miniature testes developed, and in vitro fertilization revealed that the sperm produced by those testis grafts were functional.

"At least 60 percent of grafts grew into functional testis tissue under the skin," Dobrinski said, "and those grafts produced as much sperm, gram for gram, as testes in the donor species. Some grafts grew more than 100-fold."

Similar cross-species grafts of testicular tissue have been tried previously, but no sperm cells resulted. Dobrinski speculates that the mice’s backs may have provided both an ideal temperature and suitable blood vessels to allow for the growth of functional testes.

"Dr. Dobrinski is one of the few investigators attempting to remove testicular stem cells and transplant them into recipients," said Michael D. Griswold, interim dean of science at Washington State University’s School of Molecular Biosciences, who was not involved in the work. "The fact that she can graft portions of testes from other mammalian species into mice and get sperm produced is an important step forward."

The work also demonstrates that testosterone and other mammalian hormones can work across species, said David de Kretser, director of the Institute of Reproduction and Development at Monash University in Australia. "These data indicate that the hormones produced by the mouse are adequate to stimulate sperm production in a range of species."

Spermatogenesis is a highly organized process that generates virtually unlimited sperm cells during adulthood. Continuous proliferation and differentiation of germ cells occurs in a delicate balance with various testicular compartments.

"It seems that the testis grafts transferred this entire environment to the recipient mice," Dobrinski said.

She was joined in the work by Ali Honaramooz, Amy Snedaker, Michele Boiani and Hans Schöler of Penn’s Center for Animal Transgenesis and Germ Cell Research and Stefan Schlatt of the University Münster in Germany. Schlatt conducted the group’s research with mice, Honaramooz and Snedaker conducted the work involving pigs and goats, and Boiani completed the in vitro fertilization.


###
The work was funded by the National Institutes of Health, the U.S. Department of Agriculture, the Deutsche Forschungsgemeinschaft, the Marion Dilley and David George Jones Funds and the Commonwealth and General Assembly of Pennsylvania.

Steve Bradt | EurekAlert!

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>