Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice become first animals to produce other species’ sperm

15.08.2002


Find has implications for preservation of endangered species, livestock



With pinhead-sized grafts of testicular tissue from newborn mammals, scientists at the University of Pennsylvania have induced mice to produce fully functional sperm from evolutionarily distant species. The result has important implications for preserving the germ lines of critically endangered species as well as prized livestock.
The study, in which male mice produced functional gametes first from other mice and then from pigs and goats, is reported in the Aug. 15 issue of the journal Nature.

"This is the first report of complete spermatogenesis from tissue grafted across species," said Ina Dobrinski, assistant professor of large animal reproduction in Penn’s School of Veterinary Medicine. "The production of functionally competent sperm from three different mammals indicates that testis tissue grafting may be applicable to a wide variety of species."



The work also yielded the first functional sperm from immature reproductive tissue, meaning sperm could be derived even from individuals that have not reached sexual maturity. Unlike cryonic approaches to preservation, testis tissue grafting offers a potentially inexhaustible supply of male gametes.

Mice with the testis grafts could aid studies of the effects of drugs -- including potential male contraceptives -- on sperm production. The mice also give scientists a valuable model to better understand testicular function, many aspects of which remain murky.

Dobrinski and colleagues grafted as much as one cubic millimeter of tissue from the testes of newborn mice, goats and pigs onto the backs of mice. As many as eight miniature testes developed, and in vitro fertilization revealed that the sperm produced by those testis grafts were functional.

"At least 60 percent of grafts grew into functional testis tissue under the skin," Dobrinski said, "and those grafts produced as much sperm, gram for gram, as testes in the donor species. Some grafts grew more than 100-fold."

Similar cross-species grafts of testicular tissue have been tried previously, but no sperm cells resulted. Dobrinski speculates that the mice’s backs may have provided both an ideal temperature and suitable blood vessels to allow for the growth of functional testes.

"Dr. Dobrinski is one of the few investigators attempting to remove testicular stem cells and transplant them into recipients," said Michael D. Griswold, interim dean of science at Washington State University’s School of Molecular Biosciences, who was not involved in the work. "The fact that she can graft portions of testes from other mammalian species into mice and get sperm produced is an important step forward."

The work also demonstrates that testosterone and other mammalian hormones can work across species, said David de Kretser, director of the Institute of Reproduction and Development at Monash University in Australia. "These data indicate that the hormones produced by the mouse are adequate to stimulate sperm production in a range of species."

Spermatogenesis is a highly organized process that generates virtually unlimited sperm cells during adulthood. Continuous proliferation and differentiation of germ cells occurs in a delicate balance with various testicular compartments.

"It seems that the testis grafts transferred this entire environment to the recipient mice," Dobrinski said.

She was joined in the work by Ali Honaramooz, Amy Snedaker, Michele Boiani and Hans Schöler of Penn’s Center for Animal Transgenesis and Germ Cell Research and Stefan Schlatt of the University Münster in Germany. Schlatt conducted the group’s research with mice, Honaramooz and Snedaker conducted the work involving pigs and goats, and Boiani completed the in vitro fertilization.


###
The work was funded by the National Institutes of Health, the U.S. Department of Agriculture, the Deutsche Forschungsgemeinschaft, the Marion Dilley and David George Jones Funds and the Commonwealth and General Assembly of Pennsylvania.

Steve Bradt | EurekAlert!

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>