Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope technology allows study of biomolecules interacting with minerals

05.08.2002


Virginia Tech student presents first findings at international geochemistry conference

Every living thing needs iron. The strategies some organisms use to accumulate iron can impact the quality of our environment and could be adapted for our use.

Imagine a falconer releasing his falcon to nab pigeons for his dinner. That is somewhat how the bacteria, Azotobacter vinelandii, acquire iron. They release siderophore molecules, called azotobactin, which nabs iron out of minerals.



"The molecule extracts the iron from the mineral and is expected to eventually return with the iron to the bacterial cell," says Treavor Kendall, a Ph.D. candidate in the mineral-microbe group in Virginia Tech’s Department of Geological Sciences.

Azotobacter vinelandiihas two things going for it. It releases millions of siderophores and these molecules have "a huge affinity for iron -- some of the highest affinities observed in nature," says Kendall.

Kendall studies how bacteria acquire iron. There have been a lot of studies on siderophores in the aqueous phase. "We do know how siderophores behave with iron in water," Kendall states, "But we don’t know how they interact with iron that is locked up in a mineral structure. This is important because minerals are a primary source of iron in the environment."

Kendall’s research is looking specifically at the affinity or forces between azotobactin and the mineral goethite -- an important iron oxide in soils worldwide.

He has been invited to present his research at the 12th Annual V.M. Goldschmidt Conference, an international geochemistry conference, Aug. 18-23, 2002 in Davos, Switzerland. His paper will be presented Thursday morning, Aug. 22, during the symposium on "Biogenic substances and their effect on trace metal cycling and mineral weathering" (S36 Wednesday p.m. and Thursday a.m.).

Kendall explains that when the molecule removes the iron from the mineral, it actually dissolves the mineral. "What happens if that mineral also contains lead or some other toxic metal? The siderophore can knock off those toxic metals, which then pollute the fresh water, marine environment, or semi-humid soil where these interactions most frequently occur."

Kendall has attached a siderophore to the microscopic plank or cantilever used in an atomic force microscope (AFM). The siderophore molecule is lowered toward the mineral surface to measure how it interacts. "The attraction is so high, that the cantilever actually snaps down to attach the molecule to the mineral," Kendall says. "When we pull it apart, like lifting your shoe off hot gum on the sidewalk, the molecule actually stretches until it breaks loose.

"Based on how much the molecule sticks, we can comment on how well siderophore likes that surface," says Kendall.

"The excitement is being able to measure the affinity between the siderophore molecule and the iron in the mineral structure."

At the conference, Kendall will report on three experiments.

"First, we are able to measure forces between the siderophore molecule and the goethite, and compare that with how siderophore interacts with diaspore, a mineral that contains aluminum. It works out as you would expect," says Kendall. "There is a higher affinity with the iron mineral.

"Next, we introduce a soluble or free form of iron. All of a sudden, the affinity goes away. This tells us that the siderophore is satisfied and no longer needs the iron in the mineral. It confirms that we are measuring what we thought," says Kendall. "So we have demonstrated the relationships and how we can make it go away.

"Third we demonstrate that the relationship doesn’t change when we alter the solution by changing the pH and ionic strength," says Kendall. "Thus, we are confident that we are measuring a specific interaction."

Potential environmental applications include anticipating toxic metal release and studying iron availability in soils.

Presently, siderophores are used in medicine to treat people who have too much iron in their blood. The siderophore locks up the iron so it is no longer toxic. The ability to measure iron affinity at the molecular level may allow researchers to refine siderophore medicinal use and detect iron concentrations in very small amounts by using them as a chemosensor. There has already been a paper exploring siderophores as chemosensors by other researchers, Kendall says.

Kendall’s major professor is Michael Hochella. Research funding is provided by the U.S. Department of Education, Kendall’s GAAN fellowship, the National Science Foundation, and the Department of Energy. The talk in Switzerland is Kendall’s first invited talk.

Originally from Houston, Kendall did his undergraduate work at the University of Texas at Austin and his master’s degree work at the University of Montana, Missoula.


Reach Kendall at tkendall@vt.edu or 540.231.8575.
He is in the lab most days from 8 a.m. to 7p.m. He leaves Aug. 17, but will be available by e-mail while in Switzerland.

Learn more about the Goldschmidt Conference at http://www.goldschmidt-conference.com/2002/gold2002/


Treavor Kendall | EurekAlert!
Further information:
http://www.technews.vt.edu/
http://www.goldschmidt-conference.com/2002/gold2002/

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>