Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope technology allows study of biomolecules interacting with minerals

05.08.2002


Virginia Tech student presents first findings at international geochemistry conference

Every living thing needs iron. The strategies some organisms use to accumulate iron can impact the quality of our environment and could be adapted for our use.

Imagine a falconer releasing his falcon to nab pigeons for his dinner. That is somewhat how the bacteria, Azotobacter vinelandii, acquire iron. They release siderophore molecules, called azotobactin, which nabs iron out of minerals.



"The molecule extracts the iron from the mineral and is expected to eventually return with the iron to the bacterial cell," says Treavor Kendall, a Ph.D. candidate in the mineral-microbe group in Virginia Tech’s Department of Geological Sciences.

Azotobacter vinelandiihas two things going for it. It releases millions of siderophores and these molecules have "a huge affinity for iron -- some of the highest affinities observed in nature," says Kendall.

Kendall studies how bacteria acquire iron. There have been a lot of studies on siderophores in the aqueous phase. "We do know how siderophores behave with iron in water," Kendall states, "But we don’t know how they interact with iron that is locked up in a mineral structure. This is important because minerals are a primary source of iron in the environment."

Kendall’s research is looking specifically at the affinity or forces between azotobactin and the mineral goethite -- an important iron oxide in soils worldwide.

He has been invited to present his research at the 12th Annual V.M. Goldschmidt Conference, an international geochemistry conference, Aug. 18-23, 2002 in Davos, Switzerland. His paper will be presented Thursday morning, Aug. 22, during the symposium on "Biogenic substances and their effect on trace metal cycling and mineral weathering" (S36 Wednesday p.m. and Thursday a.m.).

Kendall explains that when the molecule removes the iron from the mineral, it actually dissolves the mineral. "What happens if that mineral also contains lead or some other toxic metal? The siderophore can knock off those toxic metals, which then pollute the fresh water, marine environment, or semi-humid soil where these interactions most frequently occur."

Kendall has attached a siderophore to the microscopic plank or cantilever used in an atomic force microscope (AFM). The siderophore molecule is lowered toward the mineral surface to measure how it interacts. "The attraction is so high, that the cantilever actually snaps down to attach the molecule to the mineral," Kendall says. "When we pull it apart, like lifting your shoe off hot gum on the sidewalk, the molecule actually stretches until it breaks loose.

"Based on how much the molecule sticks, we can comment on how well siderophore likes that surface," says Kendall.

"The excitement is being able to measure the affinity between the siderophore molecule and the iron in the mineral structure."

At the conference, Kendall will report on three experiments.

"First, we are able to measure forces between the siderophore molecule and the goethite, and compare that with how siderophore interacts with diaspore, a mineral that contains aluminum. It works out as you would expect," says Kendall. "There is a higher affinity with the iron mineral.

"Next, we introduce a soluble or free form of iron. All of a sudden, the affinity goes away. This tells us that the siderophore is satisfied and no longer needs the iron in the mineral. It confirms that we are measuring what we thought," says Kendall. "So we have demonstrated the relationships and how we can make it go away.

"Third we demonstrate that the relationship doesn’t change when we alter the solution by changing the pH and ionic strength," says Kendall. "Thus, we are confident that we are measuring a specific interaction."

Potential environmental applications include anticipating toxic metal release and studying iron availability in soils.

Presently, siderophores are used in medicine to treat people who have too much iron in their blood. The siderophore locks up the iron so it is no longer toxic. The ability to measure iron affinity at the molecular level may allow researchers to refine siderophore medicinal use and detect iron concentrations in very small amounts by using them as a chemosensor. There has already been a paper exploring siderophores as chemosensors by other researchers, Kendall says.

Kendall’s major professor is Michael Hochella. Research funding is provided by the U.S. Department of Education, Kendall’s GAAN fellowship, the National Science Foundation, and the Department of Energy. The talk in Switzerland is Kendall’s first invited talk.

Originally from Houston, Kendall did his undergraduate work at the University of Texas at Austin and his master’s degree work at the University of Montana, Missoula.


Reach Kendall at tkendall@vt.edu or 540.231.8575.
He is in the lab most days from 8 a.m. to 7p.m. He leaves Aug. 17, but will be available by e-mail while in Switzerland.

Learn more about the Goldschmidt Conference at http://www.goldschmidt-conference.com/2002/gold2002/


Treavor Kendall | EurekAlert!
Further information:
http://www.technews.vt.edu/
http://www.goldschmidt-conference.com/2002/gold2002/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>