Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new insight into a common signaling pathway

01.08.2002


Scientists have identified a key regulatory mechanism in the TGF-ß pathway. This discovery by Dr. Kai Lin and colleagues at UMASS Medical School and the University of Mississippi Medical Center helps further our understanding of how this important signaling pathway functions in a variety of cellular processes, including cancer formation and embryonic development.



The work is published in the August 1 issue of Genes & Development.

The TGF-ß pathway is an intracellular signaling pathway that enables a cell to respond to changes in its environment. This signal transduction pathway converts ligand binding at the cell surface into an enzymatic cascade inside the cell, which ultimately induces changes in gene expression. In this fashion, the TGF-ß pathway regulates a number of different cellular responses, including cell proliferation, differentiation and migration, programmed cell death, and development.


The Smad family of proteins is the primary route for propagating the TGF-ß signal. Smads are activated by ligand-bound transmembrane receptors and subsequently travel through the cytoplasm and into the nucleus, where they act as transcription factors to activate the expression of TGF-ß target genes.

Dr. Lin and colleagues have determined that the conformation of the Smad3 protein specifies which members of the TGF-ß pathway it can interact with, and thereby regulates the progression of the TFG-ß signal transduction cascade.

Upon TGF-ß ligand binding to transmembrane receptors at the cell surface, a protein called SARA (Smad Anchor for Receptor Activation) recruits Smad3 to the transmembrane receptor, where Smad3 is converted from an inactive monomeric form into an active trimeric form. Trimeric Smad3 promptly dissociates from SARA and enters the nucleus, where it interacts with cofactors to regulate gene expression. Previous work has shown that nuclear Smad3 interacts with a corepressor called "Ski," which serves to prevent Smad3 activation of target genes.

Using a combination of structural and biochemical approaches, Dr. Lin and colleagues discovered that SARA preferentially binds to monomeric Smad3, while Ski preferentially binds to trimeric Smad3. The researchers thus identified an allosteric mechanism of regulation of the TGF-ß pathway: "The conformational transition functions as a master switch of the pathway, converting Smad-receptor interactions to Smad-nuclear interactions," explains Dr. Lin. The formation of trimeric Smad3 transduces the TGF-ß signal by forcing Smad3 to dissociate from SARA, thereby freeing Smad3 to travel into the nucleus.

In this manner, the conformation-dependent activity of Smad3 can both propagate the TGF-ß signal and establish a negative feedback mechanism (through Ski) to regulate the transcriptional effect of TGF-ß signaling.

So, how does a cell succeed in eliciting TGF-ß target gene expression if trimeric Smad3 is bound in the nucleus by Ski, a corepressor? The authors reason that the trimeric form of Smad3 is probably also recognized by coactivators in the nucleus, which would compete with Ski for Smad3 binding and ultimately establish the appropriate balance between transcriptional activation and repression. Further research will focus on delineating the course of these downstream nuclear events.

However, as it stand now, this work by Dr. Lin and colleagues affords enormous insight into the molecular mechanisms of the TGF-ß signaling pathway, providing possible targets for rational drug design to combat the deleterious effects of aberrant TGF-ß signaling.

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>