Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult stem cells selectively delivered into the eye and used to control angiogenesis at TSRI

30.07.2002


A team of researchers from The Scripps Research Institute (TSRI) has discovered a way to use adult bone marrow stem cells to form new blood vessels in the eye or to deliver chemicals that will prevent the abnormal formation of new vessels.



This technique, which involves injecting the stem cells into the eye, could potentially be used to stimulate vessel growth and address inherited degenerations of the retina in the first instance, and in the second, to treat ocular diseases resulting from abnormal retinal angiogenesis, the aberrant growth of new blood vessels in the eye, which is the leading cause of vision loss in the United States.

"This is very exciting," says Martin Friedlander, M.D., Ph.D., who led the study. "We have shown that the cells can incorporate into the [degenerating] vasculature and make it normal."


"And when loaded with antiangiogenics, they can selectively wipe out the formation of new blood vessels."

Friedlander, who is Associate Professor in the Department of Cell Biology and Chief of the Retina Service in the Division of Ophthalmology, Department of Surgery at Scripps Clinic, has had a longstanding research program looking at ways of treating eye diseases that result from abnormal angiogenesis.

Abnormal angiogenesis is the cause of visual loss in age-related macular degeneration, where new blood vessels grow under the retina, and diabetic retinopathy, where abnormal vessels grow on top of the retina. The end result is much the same in these diseases--the normal structures for the transmission of light to the back of the eye are lost, and vision is catastrophically impeded in many of the tens of millions of Americans who suffer from them.

From stem cells to vessels

Adult bone marrow stem cells are "pluripotent" which means they have the potential to develop into a number of different cell types, such as red blood cells, platelets, or lymphocytes. The group’s basic technique starts with selecting stem cells from the bone marrow that have the capability of becoming endothelial cells, the major cell type lining blood vessels.

Normally, retinal vascular formation occurs late in human prenatal development, when endothelial cells form a fine mesh of blood vessels in the back of the eye. In diseases like macular degeneration and diabetic retinopathy, aberrant vascular formation occurs later in life.

The vascularization in both diseases involves endothelial cells working in concert with another specialized cell--star-shaped cells called "astrocytes." These astrocytes, when activated, act as a template for vessel formation.

During prenatal human development, activated astrocytes guide endothelial cells into place where they can proliferate and form blood vessels. And later in life, activated astrocytes can also act as a template for endothelial cells to form blood vessels during angiogenesis.

Friedlander and his team found that they were able to target the activated astrocytes with the stem cell in vivo. They then tested these stem cells in a mouse model system of ocular disease. In normal mice, retinal blood vesssels form during the first three weeks after birth. In the disease model, the deeper retinal vessels completely degenerate by one month after birth.

In the ocular disease models, the stem cells differentiated into endothelial cells and proliferated, forming new blood vessels. This actually rescued and stabilized the retinal vessels when they would otherwise be degenerated.

They also found that they could shut down the angiogenesis by first transfecting the stem cells with a powerful inhibitor of angiogenesis--a fragment of the human protein tryptophanyl-tRNA synthetase (T2-TrpRS), which was discovered by TSRI Professor Paul Schimmel, Ph.D., and Friedlander and described in an article by the two investigators last year.

These transfected stem cells were also guided by the retinal astrocytes to the vasculature in the back of the eye where they expressed the T2-TrpRS protein and prevented the development of new retinal blood vessels without affecting already established blood vessels.

The research article "Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis" is authored by Atushi Otani, Karen Kinder, Karla L. Ewalt, Francella J. Otero, Paul Schimmel, and Martin Friedlander and appears in the September, 2002 issue of Nature Medicine, appearing online as part of the advance online publication section of the journal’s web site on July 29, 2002. See http://www.nature.com/nm/.


The research was primarily funded by the National Eye Institute with additional support from The National Cancer Institute, The Skaggs Institute for Chemical Biology, The Robert Mealey Program for the Study of Macular Degenerations, Merck KgaA, and the National Foundation for Cancer Research.


Robin B. Clark | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>