Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult stem cells selectively delivered into the eye and used to control angiogenesis at TSRI

30.07.2002


A team of researchers from The Scripps Research Institute (TSRI) has discovered a way to use adult bone marrow stem cells to form new blood vessels in the eye or to deliver chemicals that will prevent the abnormal formation of new vessels.



This technique, which involves injecting the stem cells into the eye, could potentially be used to stimulate vessel growth and address inherited degenerations of the retina in the first instance, and in the second, to treat ocular diseases resulting from abnormal retinal angiogenesis, the aberrant growth of new blood vessels in the eye, which is the leading cause of vision loss in the United States.

"This is very exciting," says Martin Friedlander, M.D., Ph.D., who led the study. "We have shown that the cells can incorporate into the [degenerating] vasculature and make it normal."


"And when loaded with antiangiogenics, they can selectively wipe out the formation of new blood vessels."

Friedlander, who is Associate Professor in the Department of Cell Biology and Chief of the Retina Service in the Division of Ophthalmology, Department of Surgery at Scripps Clinic, has had a longstanding research program looking at ways of treating eye diseases that result from abnormal angiogenesis.

Abnormal angiogenesis is the cause of visual loss in age-related macular degeneration, where new blood vessels grow under the retina, and diabetic retinopathy, where abnormal vessels grow on top of the retina. The end result is much the same in these diseases--the normal structures for the transmission of light to the back of the eye are lost, and vision is catastrophically impeded in many of the tens of millions of Americans who suffer from them.

From stem cells to vessels

Adult bone marrow stem cells are "pluripotent" which means they have the potential to develop into a number of different cell types, such as red blood cells, platelets, or lymphocytes. The group’s basic technique starts with selecting stem cells from the bone marrow that have the capability of becoming endothelial cells, the major cell type lining blood vessels.

Normally, retinal vascular formation occurs late in human prenatal development, when endothelial cells form a fine mesh of blood vessels in the back of the eye. In diseases like macular degeneration and diabetic retinopathy, aberrant vascular formation occurs later in life.

The vascularization in both diseases involves endothelial cells working in concert with another specialized cell--star-shaped cells called "astrocytes." These astrocytes, when activated, act as a template for vessel formation.

During prenatal human development, activated astrocytes guide endothelial cells into place where they can proliferate and form blood vessels. And later in life, activated astrocytes can also act as a template for endothelial cells to form blood vessels during angiogenesis.

Friedlander and his team found that they were able to target the activated astrocytes with the stem cell in vivo. They then tested these stem cells in a mouse model system of ocular disease. In normal mice, retinal blood vesssels form during the first three weeks after birth. In the disease model, the deeper retinal vessels completely degenerate by one month after birth.

In the ocular disease models, the stem cells differentiated into endothelial cells and proliferated, forming new blood vessels. This actually rescued and stabilized the retinal vessels when they would otherwise be degenerated.

They also found that they could shut down the angiogenesis by first transfecting the stem cells with a powerful inhibitor of angiogenesis--a fragment of the human protein tryptophanyl-tRNA synthetase (T2-TrpRS), which was discovered by TSRI Professor Paul Schimmel, Ph.D., and Friedlander and described in an article by the two investigators last year.

These transfected stem cells were also guided by the retinal astrocytes to the vasculature in the back of the eye where they expressed the T2-TrpRS protein and prevented the development of new retinal blood vessels without affecting already established blood vessels.

The research article "Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis" is authored by Atushi Otani, Karen Kinder, Karla L. Ewalt, Francella J. Otero, Paul Schimmel, and Martin Friedlander and appears in the September, 2002 issue of Nature Medicine, appearing online as part of the advance online publication section of the journal’s web site on July 29, 2002. See http://www.nature.com/nm/.


The research was primarily funded by the National Eye Institute with additional support from The National Cancer Institute, The Skaggs Institute for Chemical Biology, The Robert Mealey Program for the Study of Macular Degenerations, Merck KgaA, and the National Foundation for Cancer Research.


Robin B. Clark | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>