Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer Heat Too Hot for You? What Is Comfortable?

31.07.2008
Extreme heat or cold is not only uncomfortable, it can be deadly—causing proteins to unravel and malfunction.

For many years now, scientists have understood the molecular mechanisms that enable animals to sense dangerous temperatures; such as extremely high temperatures that directly trigger heat sensor proteins known as TRP channels. However, much more poorly understood is how animals sense very small temperature differences in the comfortable range, and choose their favorite temperature.

Reporting this week at Nature Neuroscience, Johns Hopkins researchers now have discovered that the fruit fly uses TRPA1 to sense single degree changes in the comfortable range. However, rather than sensing temperature changes directly, TRPA1 functions in the last step of a multistep process that uses many of the same proteins that function in vision. Just as the early events involved in vision allow animals to adapt to different light intensities, the multistep process involved in temperature detection potentially allows animals to adapt to different temperatures in the comfortable range as well.

“It’s an exciting discovery, yet in a lot of ways it just makes a lot of sense,” says Craig Montell, Ph.D., a professor of biological chemistry and member of Johns Hopkins’ new Center for Sensory Biology. “You clearly don’t want to hang around or adapt to a temperature that could kill you, but on the other hand, if you can't find your favorite temperature, it is OK to adapt to another comfortable temperature.”

... more about:
»Montell »Multistep »TRP »TRPA1 »adapt »differences »larvae »sense
Montell and his team use fruit flies as their experimental model because it is easy to perform genetic manipulations on these animals. Temperatures colder than 16 degrees Celsius (61 degrees Fahrenheit) or warmer than 26 degrees C (79 degrees F) are known to trigger an avoidance response. Fruit fly maggots (larvae), explains Montell, prefer 18 degrees C (64 degrees F), but are comfortable at temperatures ranging from 18 to 24 degrees C (64 to 75

degrees F).

To first figure out if the larvae could even sense small temperature differences in the 18 to 24 degree “comfort zone,” Montell’s team set up a preference test that consisted of a plastic plate where one half of the plate was kept at 18 degrees and the other half at a different temperature, from 19 to 24 degrees. After 15 minutes, they counted the number of larvae on each side of the plate.

“It turns out these larvae can discriminate one degree differences—they prefer 18 over 19 degrees” says Montell. “The question then was: How do they do this?”

Since TRP channels are known to open in response to changes in temperature, Montell’s team then tested flies containing mutations in 12 fruit fly TRP genes to see if any were required for the ability to sense temperature changes within the comfort zone.

Eleven of the 12 TRP mutants still preferred 18 degrees to other temperatures in this range. Only the TRPA1 mutant larvae showed no temperature preference, suggesting to the researchers that only TRPA1 is required for comfort zone temperature sensing.

The known “thermoTRPs” all open directly in response to changes in temperature. TRP proteins also are involved in other types of sensory biology, including vision, explains Montell. But rather than being directly triggered by light, a different light sensor molecule activates the TRP vision protein indirectly. Since TRPA1 is not turned on by changes in temperature in the comfortable range, Montell’s team reasoned that perhaps, in this range, TRPA1 might be triggered indirectly through a series of steps similar to those that function in vision.

The team then tested flies with mutations disrupting proteins known to work with TRP proteins required for fly vision and found that they, too, were unable to discern temperature differences in the 18 to 24 C range.

Thus, Montell and co-workers have found a new way that TRP channels function in thermosensation, and this “is quite reminiscent of how we detect light.”

“We think it’s important for adaptation; if a fly finds itself at 34 degrees (93 degrees F), it should never try to adapt to that temperature, because it will die,” says Montell. “But flies living at 22 degrees could adapt to this environment because, while this temperature isn’t their optimal choice, it still isn’t deleterious.” The multistep vision-like strategy for sensing changes in temperature could also be well suited for amplifying very small differences in temperature, such as 18 and 19 degrees C. This strategy could allow animals to respond to one degree changes that might otherwise not be possible through a process involving just one protein.

The team’s work raises the possibility that similar multistep processes may allow mammals to sense small changes in internal body temperature.

The research was funded by the National Eye Institute and the National Institute of General Medical Sciences.

Authors on the paper are Young Kwon, Hye-Seok Shim, Xiaoyue Wang and Montell, all of Hopkins.

Audrey Huang | Newswise Science News
Further information:
http://www.jhmi.edu
http://www.nature.com/neuro/index.html
http://biolchem.bs.jhmi.edu/members/facultydetail.asp?PersonID=674

Further reports about: Montell Multistep TRP TRPA1 adapt differences larvae sense

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>