Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer Heat Too Hot for You? What Is Comfortable?

31.07.2008
Extreme heat or cold is not only uncomfortable, it can be deadly—causing proteins to unravel and malfunction.

For many years now, scientists have understood the molecular mechanisms that enable animals to sense dangerous temperatures; such as extremely high temperatures that directly trigger heat sensor proteins known as TRP channels. However, much more poorly understood is how animals sense very small temperature differences in the comfortable range, and choose their favorite temperature.

Reporting this week at Nature Neuroscience, Johns Hopkins researchers now have discovered that the fruit fly uses TRPA1 to sense single degree changes in the comfortable range. However, rather than sensing temperature changes directly, TRPA1 functions in the last step of a multistep process that uses many of the same proteins that function in vision. Just as the early events involved in vision allow animals to adapt to different light intensities, the multistep process involved in temperature detection potentially allows animals to adapt to different temperatures in the comfortable range as well.

“It’s an exciting discovery, yet in a lot of ways it just makes a lot of sense,” says Craig Montell, Ph.D., a professor of biological chemistry and member of Johns Hopkins’ new Center for Sensory Biology. “You clearly don’t want to hang around or adapt to a temperature that could kill you, but on the other hand, if you can't find your favorite temperature, it is OK to adapt to another comfortable temperature.”

... more about:
»Montell »Multistep »TRP »TRPA1 »adapt »differences »larvae »sense
Montell and his team use fruit flies as their experimental model because it is easy to perform genetic manipulations on these animals. Temperatures colder than 16 degrees Celsius (61 degrees Fahrenheit) or warmer than 26 degrees C (79 degrees F) are known to trigger an avoidance response. Fruit fly maggots (larvae), explains Montell, prefer 18 degrees C (64 degrees F), but are comfortable at temperatures ranging from 18 to 24 degrees C (64 to 75

degrees F).

To first figure out if the larvae could even sense small temperature differences in the 18 to 24 degree “comfort zone,” Montell’s team set up a preference test that consisted of a plastic plate where one half of the plate was kept at 18 degrees and the other half at a different temperature, from 19 to 24 degrees. After 15 minutes, they counted the number of larvae on each side of the plate.

“It turns out these larvae can discriminate one degree differences—they prefer 18 over 19 degrees” says Montell. “The question then was: How do they do this?”

Since TRP channels are known to open in response to changes in temperature, Montell’s team then tested flies containing mutations in 12 fruit fly TRP genes to see if any were required for the ability to sense temperature changes within the comfort zone.

Eleven of the 12 TRP mutants still preferred 18 degrees to other temperatures in this range. Only the TRPA1 mutant larvae showed no temperature preference, suggesting to the researchers that only TRPA1 is required for comfort zone temperature sensing.

The known “thermoTRPs” all open directly in response to changes in temperature. TRP proteins also are involved in other types of sensory biology, including vision, explains Montell. But rather than being directly triggered by light, a different light sensor molecule activates the TRP vision protein indirectly. Since TRPA1 is not turned on by changes in temperature in the comfortable range, Montell’s team reasoned that perhaps, in this range, TRPA1 might be triggered indirectly through a series of steps similar to those that function in vision.

The team then tested flies with mutations disrupting proteins known to work with TRP proteins required for fly vision and found that they, too, were unable to discern temperature differences in the 18 to 24 C range.

Thus, Montell and co-workers have found a new way that TRP channels function in thermosensation, and this “is quite reminiscent of how we detect light.”

“We think it’s important for adaptation; if a fly finds itself at 34 degrees (93 degrees F), it should never try to adapt to that temperature, because it will die,” says Montell. “But flies living at 22 degrees could adapt to this environment because, while this temperature isn’t their optimal choice, it still isn’t deleterious.” The multistep vision-like strategy for sensing changes in temperature could also be well suited for amplifying very small differences in temperature, such as 18 and 19 degrees C. This strategy could allow animals to respond to one degree changes that might otherwise not be possible through a process involving just one protein.

The team’s work raises the possibility that similar multistep processes may allow mammals to sense small changes in internal body temperature.

The research was funded by the National Eye Institute and the National Institute of General Medical Sciences.

Authors on the paper are Young Kwon, Hye-Seok Shim, Xiaoyue Wang and Montell, all of Hopkins.

Audrey Huang | Newswise Science News
Further information:
http://www.jhmi.edu
http://www.nature.com/neuro/index.html
http://biolchem.bs.jhmi.edu/members/facultydetail.asp?PersonID=674

Further reports about: Montell Multistep TRP TRPA1 adapt differences larvae sense

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>