Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer Heat Too Hot for You? What Is Comfortable?

31.07.2008
Extreme heat or cold is not only uncomfortable, it can be deadly—causing proteins to unravel and malfunction.

For many years now, scientists have understood the molecular mechanisms that enable animals to sense dangerous temperatures; such as extremely high temperatures that directly trigger heat sensor proteins known as TRP channels. However, much more poorly understood is how animals sense very small temperature differences in the comfortable range, and choose their favorite temperature.

Reporting this week at Nature Neuroscience, Johns Hopkins researchers now have discovered that the fruit fly uses TRPA1 to sense single degree changes in the comfortable range. However, rather than sensing temperature changes directly, TRPA1 functions in the last step of a multistep process that uses many of the same proteins that function in vision. Just as the early events involved in vision allow animals to adapt to different light intensities, the multistep process involved in temperature detection potentially allows animals to adapt to different temperatures in the comfortable range as well.

“It’s an exciting discovery, yet in a lot of ways it just makes a lot of sense,” says Craig Montell, Ph.D., a professor of biological chemistry and member of Johns Hopkins’ new Center for Sensory Biology. “You clearly don’t want to hang around or adapt to a temperature that could kill you, but on the other hand, if you can't find your favorite temperature, it is OK to adapt to another comfortable temperature.”

... more about:
»Montell »Multistep »TRP »TRPA1 »adapt »differences »larvae »sense
Montell and his team use fruit flies as their experimental model because it is easy to perform genetic manipulations on these animals. Temperatures colder than 16 degrees Celsius (61 degrees Fahrenheit) or warmer than 26 degrees C (79 degrees F) are known to trigger an avoidance response. Fruit fly maggots (larvae), explains Montell, prefer 18 degrees C (64 degrees F), but are comfortable at temperatures ranging from 18 to 24 degrees C (64 to 75

degrees F).

To first figure out if the larvae could even sense small temperature differences in the 18 to 24 degree “comfort zone,” Montell’s team set up a preference test that consisted of a plastic plate where one half of the plate was kept at 18 degrees and the other half at a different temperature, from 19 to 24 degrees. After 15 minutes, they counted the number of larvae on each side of the plate.

“It turns out these larvae can discriminate one degree differences—they prefer 18 over 19 degrees” says Montell. “The question then was: How do they do this?”

Since TRP channels are known to open in response to changes in temperature, Montell’s team then tested flies containing mutations in 12 fruit fly TRP genes to see if any were required for the ability to sense temperature changes within the comfort zone.

Eleven of the 12 TRP mutants still preferred 18 degrees to other temperatures in this range. Only the TRPA1 mutant larvae showed no temperature preference, suggesting to the researchers that only TRPA1 is required for comfort zone temperature sensing.

The known “thermoTRPs” all open directly in response to changes in temperature. TRP proteins also are involved in other types of sensory biology, including vision, explains Montell. But rather than being directly triggered by light, a different light sensor molecule activates the TRP vision protein indirectly. Since TRPA1 is not turned on by changes in temperature in the comfortable range, Montell’s team reasoned that perhaps, in this range, TRPA1 might be triggered indirectly through a series of steps similar to those that function in vision.

The team then tested flies with mutations disrupting proteins known to work with TRP proteins required for fly vision and found that they, too, were unable to discern temperature differences in the 18 to 24 C range.

Thus, Montell and co-workers have found a new way that TRP channels function in thermosensation, and this “is quite reminiscent of how we detect light.”

“We think it’s important for adaptation; if a fly finds itself at 34 degrees (93 degrees F), it should never try to adapt to that temperature, because it will die,” says Montell. “But flies living at 22 degrees could adapt to this environment because, while this temperature isn’t their optimal choice, it still isn’t deleterious.” The multistep vision-like strategy for sensing changes in temperature could also be well suited for amplifying very small differences in temperature, such as 18 and 19 degrees C. This strategy could allow animals to respond to one degree changes that might otherwise not be possible through a process involving just one protein.

The team’s work raises the possibility that similar multistep processes may allow mammals to sense small changes in internal body temperature.

The research was funded by the National Eye Institute and the National Institute of General Medical Sciences.

Authors on the paper are Young Kwon, Hye-Seok Shim, Xiaoyue Wang and Montell, all of Hopkins.

Audrey Huang | Newswise Science News
Further information:
http://www.jhmi.edu
http://www.nature.com/neuro/index.html
http://biolchem.bs.jhmi.edu/members/facultydetail.asp?PersonID=674

Further reports about: Montell Multistep TRP TRPA1 adapt differences larvae sense

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>