Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polluted Gowanus Canal May Be Source of New Antibiotics

31.07.2008
New York City College of Technology Biology Professors Nasreen and Niloufar Haque have announced preliminary findings of their research on the "white stuff" in Brooklyn's Gowanus Canal.

“What we suspected turned out to be true,” Nasreen confirmed. “The extracts from the microbes in the water proved to be potential sources of antibiotics or inhibitors.” Clearly, this discovery has a possible significant positive impact on human health as well as on the health of ecological systems.

For the past two years, the Haques’ biodiversity project, in which City Tech and other students have participated, has taken them as far away as the Red Sea in the Middle East and as nearby as the Gowanus Canal, researching microbes in these waters and their effect on humans. Yet perhaps the most unusual -- or, at least, most intriguing -- findings under their microscopes came from the Gowanus’ biofilm, a composite of bacteria, protozoans, chemicals and other debris.

“Despite the canal’s toxicity, which includes cancer-causing chemical agents,” explained Nasreen, "microorganisms are surviving by adapting to the harsh environment there that shouldn’t survive at all. Working in synergy, they seem to sense if nutrients are available; they exchange genes and secrete substances -- some of which operate like antibiotics. I believe these substances may provide clues that lead to the development of new drugs to combat human disease.”

... more about:
»Cell »Disease »Haque »Nasreen »microorganisms

The Haques lab-culture the microorganisms on campus to extract their secretions. Next, scientists at Mount Sinai School of Medicine conduct protein sequencing to identify the extracts' exact chemical composition. DNA sequencing to identify the microorganisms is then done in the Department of Genomics at The American Museum of Natural History. “This,” Nasreen added, “is part of the process of hopefully discovering why some of the microorganisms are bacteria-resistant."

Nasreen’s research career focuses on cardiovascular disease and involves cultivation of bacteria that may have medicinal value, especially those that might have an anti-inflammatory effect. Previously, her research as a faculty member at The Mount Sinai School of Medicine led to the discovery of a new role for a gene in the chemokine family of proteins, one of which regulates migration of cells in arteries, thus illuminating how heart disease and cancer develop. This work may help evolve new medicines to aid dysfunctional arteries or fight cancer.

Niloufar researches neurodegenerative diseases such as Alzheimer’s and Parkinson's, and hopes to discover new drugs as a result of her and her sister’s Gowanus work. In India, she is conducting stem cell research to determine possible applications in the treatment of dementia.

“Bodies of water worldwide are the new frontier in the search for microbes and microbial processes from which new antibiotics might be developed,” said Nasreen. “The Gowanus Canal is of particular interest to us precisely because it is home to many bacteria-resistant organisms The work is especially challenging because the breakthrough we are hoping for from our Gowanus research is like looking for a needle in a haystack.”

In the next phase of their research, the Haques will examine specific antibiotic-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus, or “staph,” to see if any of the Gowanus microbial extracts can inhibit those organisms. They are testing these extracts in collaboration with the Institute of Basic Research on Staten Island, to profile their effect on human brain-derived cells. City Tech and other students will again assist with this research.

When asked about the potential health risks involving some of the secretions found in the Gowanus, Nasreen replied that she certainly wouldn’t advise swimming in the canal. “Under normal circumstances,” she added, “the bio-organisms in the canal probably pose minimal danger to people living nearby. But young children whose immune systems have not yet fully developed and older people whose systems tend to diminish with age might be at higher risk. And individuals with severely compromised immune systems would be at an even greater risk. Of course, were the Gowanus to overflow and flood the surrounding grounds and basements of homes that flank the canal, that might be a different story.”

Nasreen has lobbied for and would like to see studies undertaken to profile the occurrence of infectious disease among people of all ages living in close proximity to the Gowanus. “Are such diseases more frequent,” she asked, “among this population than among people who live farther away from the canal?”

She doesn’t believe that the community should wait, however, for the results of such studies to detoxify and otherwise clean up the Gowanus Canal. “It’s smelly and potentially hazardous to some people’s health,” she added,“ and anything but a pretty sight.”

Of the two Haques, Nasreen is the one who collects the samples--fully protected in professional diving gear--working with Urban Divers, a local organization. This part of her work came naturally. “I love biology, and I love the water, the ocean. I was into diving,” she explained. She first became involved with marine research in 1989 as a faculty member at the National Institute of Oceanography in Goa, India, on an expedition to India’s Laccadive Islands, looking for biodiversity in fish.

While Niloufar, 51, is 4 ½ years older than Nasreen, the two, who live with family in Staten Island’s Willowbrook section, do not have a big sister/little sister dynamic. “We finish each other's sentences,” Niloufar said. “I think with the brain and Nasreen thinks with the heart, but at times we switch. We complement each other well.”

The largest public college of technology in New York State, New York City College of Technology (City Tech) enrolls more than 13,500 students in 57 baccalaureate, associate and specialized certificate programs in 21st century technologies and related fields. Located at 300 Jay Street in Downtown Brooklyn, City Tech is at the MetroTech Center academic and commercial complex, convenient to public transportation.

Michele Forsten | Newswise Science News
Further information:
http://www.citytech.cuny.edu/

Further reports about: Cell Disease Haque Nasreen microorganisms

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>