Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Proteins in Seminal Fluid May Affect Reproductive Success

30.07.2008
More than 80 proteins, thought to play a role in reproductive success, have been discovered in the seminal fluid of fruit flies. These proteins may affect the competitive ability of sperm, influence female behavior, and "disarm" reproductive proteins from other males that have mated with the female.

Seminal fluid contains protein factors that, when transferred from a male to a female at mating, affect reproductive success.

This is true of many different animals, from crickets to primates. In fruit flies, for instance, seminal fluid proteins influence the competitive ability of a male's sperm, and alter the female's post-mating behavior by dampening her interest in other males and cueing her to lay eggs. There is also some speculation, not yet proven, that having the wrong seminal fluid proteins might be one of several barriers to cross-breeding between closely related species.

Although several seminal fluid proteins have been characterized, little has been known about the exact kinds of transferred male proteins present in the female shortly after mating -- how many there are, their relative abundance, their structure, specific functions, and interactions with proteins from either the female or the seminal fluid of other males who mate with the same female. Gathering such information involves proteomics, the large-scale study of the nature and actions of proteins in living systems.

... more about:
»MacCoss »female »genes »proteomic »seminal

Using a new proteomic method, scientists at the University of Washington (UW) have discovered more than 80 proteins, previously not known to have a role in reproduction, that were transferred to female fruit flies in seminal fluids. Before this study, nearly 20 of the genes encoding these proteins were not even known to exist. The researchers also confirmed the presence of more than 70 additional proteins other scientists had predicted would be found.

The results were published in the July 29 issue of Public Library of Science (PLoS) Biology. The authors were Geoffrey D. Findlay, a doctoral candidate in the UW Department of Genome Sciences; Xianhua Yi, formerly a postdoctoral researcher at the UW and now with Momento Pharmaceuticals, Cambridge, Mass.; Michael J. MacCoss, assistant professor of genome sciences whose lab designs and tests new proteomic technologies; and Willie J. Swanson, associate professor of genome sciences whose lab studies the evolution and function of reproductive proteins. The Swanson lab looks at how changes in these proteins may lead to male/female mismatches and infertility from incompatibility, analogous to rejecting an organ transplant.

MacCoss said that it was surprising to observe how rapidly seminal fluid proteins evolve in fruit flies.

"They change with the quickness we would expect for the immune system, which has to respond fast to new pathogens," MacCoss said. The rapid evolution of the proteins that chaperone sperm may be due to the high-stakes competition between the many males that mate with each female fly.

Each male fruit fly, Findlay said, has an evolutionary advantage if he can increase the competitive ability of his sperm. When the female retreats to lay eggs, he wants them to be his offspring.

To this end, the male's seminal fluid proteins aim to ensure that his sperm are successfully stored in the female's reproductive tract, cue the female to lay eggs immediately after receiving his sperm, and make the female less likely to mate again with another male. The proteins may also attempt to "disarm" the seminal proteins transferred to the female by other males. If a male's seminal proteins can outperform his competitors', he'll be more successful in passing on his genes to the next generation.

"Don't forget the female," Findlay added. "She's not a passive participant in the chemical struggle." The first male she mates with may not be the best father for her offspring, so it may not be in her interest to lay all of her eggs with his sperm. It is widely suspected that proteins in the female reproductive tract are co-evolving with their male counterparts to look out for the female's own reproductive interests.

"There is cooperation and conflict between the male and female," Findlay said. Each is pushing the envelop to serve his or her own reproductive interests. When the interests of males and females don't match, the sexes undergo an evolutionary struggle for control of the outcome. The competition among males, and the conflict between the sexes, may be driving the evolutionary patterns of their respective reproductive proteins.

This constant interplay between male and female proteins has caused seminal fluid content to differ between closely related species of fruit flies. The researchers showed this in two ways. First, by making DNA sequence comparisons, they found that when the same proteins appear in different species, the molecules often have different sequences and have diverged more quickly than would be expected by chance. Second, using proteomics, they identified proteins that are found only in certain species' seminal fluid.

Work in other labs has shown that female fruit flies that get too many shots of seminal fluid may pay with their lives. As the number of matings increase for a female, her behavior is more constantly under the influence of male seminal proteins and may move further away from the optimal for the female's physiological well-being. The males are not trying to kill the female, Findlay explained, but the toxic effect of mating is potentially a byproduct of protein manipulation.

Previous studies of seminal fluid proteins took years because each protein had to be painstakingly culled out.

"Separating transferred proteins from an animal's own proteins is like searching for a needle in a haystack," said MacCoss. "We modified a technique to label the females' proteins by feeding them yeast carrying a stable isotope. This made the female proteins in the specimens invisible to our mass spectrometer. We then could pick out the transferred male proteins." This same isotope labeling method, MacCoss said, could be used to detect other proteins transferred from one organism to another, such as from a nursing mother to her baby or from a pathogen to the animal it infects.

How does knowledge about fruit fly seminal fluid proteins help improve understanding of fertility and infertility in other living things or in human couples?

"The specific genes and proteins might be different, but it's likely that other genes and proteins fulfilling similar reproductive functions will be found in other species. Seminal fluid proteins are of critical importance in reproductive fitness," said Swanson, "but it's not as easy as saying, 'If we find this in fruit flies, this means it's in people.'"

Leila Gray | Newswise Science News
Further information:
http://www.u.washington.edu.

Further reports about: MacCoss female genes proteomic seminal

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>