Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Proteins in Seminal Fluid May Affect Reproductive Success

30.07.2008
More than 80 proteins, thought to play a role in reproductive success, have been discovered in the seminal fluid of fruit flies. These proteins may affect the competitive ability of sperm, influence female behavior, and "disarm" reproductive proteins from other males that have mated with the female.

Seminal fluid contains protein factors that, when transferred from a male to a female at mating, affect reproductive success.

This is true of many different animals, from crickets to primates. In fruit flies, for instance, seminal fluid proteins influence the competitive ability of a male's sperm, and alter the female's post-mating behavior by dampening her interest in other males and cueing her to lay eggs. There is also some speculation, not yet proven, that having the wrong seminal fluid proteins might be one of several barriers to cross-breeding between closely related species.

Although several seminal fluid proteins have been characterized, little has been known about the exact kinds of transferred male proteins present in the female shortly after mating -- how many there are, their relative abundance, their structure, specific functions, and interactions with proteins from either the female or the seminal fluid of other males who mate with the same female. Gathering such information involves proteomics, the large-scale study of the nature and actions of proteins in living systems.

... more about:
»MacCoss »female »genes »proteomic »seminal

Using a new proteomic method, scientists at the University of Washington (UW) have discovered more than 80 proteins, previously not known to have a role in reproduction, that were transferred to female fruit flies in seminal fluids. Before this study, nearly 20 of the genes encoding these proteins were not even known to exist. The researchers also confirmed the presence of more than 70 additional proteins other scientists had predicted would be found.

The results were published in the July 29 issue of Public Library of Science (PLoS) Biology. The authors were Geoffrey D. Findlay, a doctoral candidate in the UW Department of Genome Sciences; Xianhua Yi, formerly a postdoctoral researcher at the UW and now with Momento Pharmaceuticals, Cambridge, Mass.; Michael J. MacCoss, assistant professor of genome sciences whose lab designs and tests new proteomic technologies; and Willie J. Swanson, associate professor of genome sciences whose lab studies the evolution and function of reproductive proteins. The Swanson lab looks at how changes in these proteins may lead to male/female mismatches and infertility from incompatibility, analogous to rejecting an organ transplant.

MacCoss said that it was surprising to observe how rapidly seminal fluid proteins evolve in fruit flies.

"They change with the quickness we would expect for the immune system, which has to respond fast to new pathogens," MacCoss said. The rapid evolution of the proteins that chaperone sperm may be due to the high-stakes competition between the many males that mate with each female fly.

Each male fruit fly, Findlay said, has an evolutionary advantage if he can increase the competitive ability of his sperm. When the female retreats to lay eggs, he wants them to be his offspring.

To this end, the male's seminal fluid proteins aim to ensure that his sperm are successfully stored in the female's reproductive tract, cue the female to lay eggs immediately after receiving his sperm, and make the female less likely to mate again with another male. The proteins may also attempt to "disarm" the seminal proteins transferred to the female by other males. If a male's seminal proteins can outperform his competitors', he'll be more successful in passing on his genes to the next generation.

"Don't forget the female," Findlay added. "She's not a passive participant in the chemical struggle." The first male she mates with may not be the best father for her offspring, so it may not be in her interest to lay all of her eggs with his sperm. It is widely suspected that proteins in the female reproductive tract are co-evolving with their male counterparts to look out for the female's own reproductive interests.

"There is cooperation and conflict between the male and female," Findlay said. Each is pushing the envelop to serve his or her own reproductive interests. When the interests of males and females don't match, the sexes undergo an evolutionary struggle for control of the outcome. The competition among males, and the conflict between the sexes, may be driving the evolutionary patterns of their respective reproductive proteins.

This constant interplay between male and female proteins has caused seminal fluid content to differ between closely related species of fruit flies. The researchers showed this in two ways. First, by making DNA sequence comparisons, they found that when the same proteins appear in different species, the molecules often have different sequences and have diverged more quickly than would be expected by chance. Second, using proteomics, they identified proteins that are found only in certain species' seminal fluid.

Work in other labs has shown that female fruit flies that get too many shots of seminal fluid may pay with their lives. As the number of matings increase for a female, her behavior is more constantly under the influence of male seminal proteins and may move further away from the optimal for the female's physiological well-being. The males are not trying to kill the female, Findlay explained, but the toxic effect of mating is potentially a byproduct of protein manipulation.

Previous studies of seminal fluid proteins took years because each protein had to be painstakingly culled out.

"Separating transferred proteins from an animal's own proteins is like searching for a needle in a haystack," said MacCoss. "We modified a technique to label the females' proteins by feeding them yeast carrying a stable isotope. This made the female proteins in the specimens invisible to our mass spectrometer. We then could pick out the transferred male proteins." This same isotope labeling method, MacCoss said, could be used to detect other proteins transferred from one organism to another, such as from a nursing mother to her baby or from a pathogen to the animal it infects.

How does knowledge about fruit fly seminal fluid proteins help improve understanding of fertility and infertility in other living things or in human couples?

"The specific genes and proteins might be different, but it's likely that other genes and proteins fulfilling similar reproductive functions will be found in other species. Seminal fluid proteins are of critical importance in reproductive fitness," said Swanson, "but it's not as easy as saying, 'If we find this in fruit flies, this means it's in people.'"

Leila Gray | Newswise Science News
Further information:
http://www.u.washington.edu.

Further reports about: MacCoss female genes proteomic seminal

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>