Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of hepatitis B virus mapped

28.07.2008
Utrecht University researchers develop method to spray virus

Using a newly developed method, Utrecht University researchers have mapped the structure and composition of the hepatitis B virus. The researchers were able to map the structure by spraying the virus.

Their research brings us a step closer to understanding and combating hepatitis B infection. The method can also be used to analyse other viruses. The results of the search were recently published in two renowned scientific journals: Proceedings of the National Academy of Sciences USA and Angewandte Chemie International Edition England.

To better understand and deal with viral infections, it is essential to examine the virus carefully at molecular level. However, the virus is too large to do this using the standard methods. For that reason, especially for this project, Utrecht University researcher Charlotte Uetrecht developed a modified mass spectrometer that can spray the virus intact. She did this together with Prof. Albert Heck (Utrecht University) and researchers from America and Amsterdam.

... more about:
»Hepatitis »Spray »Virus

Preventing viral infection

Using the modified mass spectrometer, the researchers looked at the structure and composition of the hepatitis B virus, a virus that causes severe liver ailments in humans. With the spectrometer, the researchers not only observed various forms of the virus, but they also saw the virus’ molecular structure. This makes it possible in the future to block the production of viruses, and in that way to combat viral infection. The technology developed can also be used to map and identify other viruses, such as viruses that can potentially be used in weaponised form by terrorists.

Sneezing

Mass spectrometry is a technology with which scientists can identify molecules. Among other things, this technology is used in dope testing and for identifying paint traces in forensic investigations. Mass spectrometry works particularly well with smaller molecules. Viruses however are a million times greater in mass. To be able to use mass spectrometry nevertheless, researchers spray the virus with water through a high-tension electric charge. This technique separates the viruses from the water, enabling researchers to examine them individually. This spraying process is comparable to the transmission of a cold virus by sneezing.

Peter van der Wilt | alfa
Further information:
http://www.uu.nl

Further reports about: Hepatitis Spray Virus

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>