Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New TNFR Signaling Mechanism Discovered

18.07.2008
A team of researchers at the University of California, San Diego School of Medicine has uncovered a new signaling mechanism used to activate protein kinases that are critical for the body’s inflammatory response. Their work will be published in the July 18 online edition of Science (Science Express).

“In addition to helping explain the basic mechanisms of transmembrane receptor signaling, these results may identify a potential therapy for interfering with inflammation,” said Michael Karin, Ph.D., professor of pharmacology and pathology in UC San Diego’s Laboratory of Gene Regulation and Signal Transduction.

The tumor necrosis factor (TNF) receptor (TNFR) family codes for a large number of cell surface receptors of great biomedical importance, and its signaling mechanisms have been the subject of intense investigation during the past decade. Specific inhibitors of TNF receptor 1 (TNFR1) activation are being used in the treatment of rheumatoid arthritis, psoriasis and inflammatory bowel disease, and receptor activator of NF-êB (RANK) inhibitors were recently found to be effective in the treatment of osteoporosis and other bone loss diseases.

Now Atsushi Matsuzawa, Ph.D., and Ping-Hui Tseng, Ph.D., postdoctoral fellows in the Karin laboratory, describe how engagement of CD40, a member of the TNFR family, results in assembly of multiprotein signaling complexes at the receptor. However, according to the researchers – and contrary to previous expectations – signaling cascades that lead to activation of Jun Kinases (JNK) and p38 MAP Kinases (MAPK) are not initiated until these complexes dissociate from the receptor.

... more about:
»TNFR »mechanism »receptor

The authors found that complex translocation from the cell surface receptor to the cytoplasm, which is required for JNK and p38 activation, depends on degradation of a signaling protein called TRAF3. This process can be inhibited by a class of compounds known as Smac mimics.

“As Smac mimic compounds do not interfere with the activation of NF-êB-dependent innate immunity but do prevent the induction of JNK- and p38- dependent inflammatory mediators, they may serve as the prototypes for new anti-inflammatory therapy,” said Karin, who also noted that current drugs that work by interfering with TNFR signaling exceed $5 billion a year in revenue.

Additional contributors include Sivakumar Vallabhapurapu, Jun-Li Luo and Weizhou Zhang, Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, UCSD School of Medicine; Haopeng Wang and Dario A. A. Vignali, Department of Immunology, St. Jude Children’s Research Hospital, Memphis; and Ewen Gallagher, Department of Immunology, Imperial College, London, Faculty of Medicine, Norfolk Place, London. Work was supported by grants from the National Institutes of Health, the Leukemia and Lymphoma Society, The Mochida Memorial Foundation for Medical and Pharmaceutical Research, American Lung Association of California and Life Science Foundation; a Cancer Center Support CORE grant and the American Lebanese Syrian Associated Charities (ALSAC). Karin is an American Cancer Society Research Professor.

Debra Kain | Newswise Science News
Further information:
http://www.ucsd.edu

Further reports about: TNFR mechanism receptor

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>