Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The emerging story of plant roots

16.07.2008
An international group of European and US scientists led by the Centre for Plant Integrative Biology at The University of Nottingham have uncovered a fascinating new insight into the unseen side of plant biology — the root.

Although less visible than shoots, leaves and flowers, plant roots are critical to our lives. They provide the crops we eat with water, nutrients, a firm anchor and a place to store food. Roots are complex branching organs and show a wide variation in the way they grow through the soil to exploit the available resources.

The way that new lateral roots are formed and grow is key to this process. Lateral roots originate deep within the parent root and must emerge through intervening layers of tissues before entering the soil. Despite its importance to the integrity and architecture of the root system, little is known about the regulation of lateral root emergence. This question has fascinated, yet frustrated, scientists since the nineteenth century.

A paper appearing in Nature Cell Biology reveals for the very first time how lateral root emergence is achieved. It reports that new lateral roots reprogramme the cells that overlay them, causing them to separate and enabling the new root to emerge. In short, the scientists have discovered how new roots open the door to the world outside.

... more about:
»Biology »Science »lateral

Professor Malcolm Bennett, Biology Director for the Centre for Plant Integrative Biology and Head of Division of Plant and Crop Sciences, said: ”In addition to providing new biological insight into lateral root emergence, we have a identified a large number of genes that control this process. This is really important because this may enable us to breed crops with improved root architecture in the future.”

The Centre for Plant Integrative Biology (CPIB) is funded by the Systems Biology joint initiative of the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) which has provided £27m for six specialised centres across the UK. The Division of Plant and Crop Sciences is one of the largest communities of plant scientists in the UK. Around 160 people work in the division, which welcomes visiting scientists from all over the world, reinforcing its reputation as a world-renowned centre.

This international collaboration involved more than 20 scientists from laboratories based in Belgium, France, Germany, Spain, Sweden, USA and UK.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/The_emerging_story_of_plant_roots.html

Further reports about: Biology Science lateral

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>