Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers find molecule that kills kidney cancer cells

09.07.2008
Kidney cancer patients generally have one option for beating their disease: surgery to remove the organ.

But that could change, thanks to a new molecule found by Stanford University School of Medicine researchers that kills kidney cancer cells. Ideally, the researchers said, a drug created from this molecule would help fight the life-threatening disease while leaving patients' kidneys intact.

"You now have a potential means of going after a disease that's been difficult to treat," said Amato Giaccia, PhD, professor and director of radiation oncology and radiation biology at the medical school. His findings will be published in the journal Cancer Cell on July 8.

Giaccia said his lab focused on renal cell carcinoma, or kidney cancer, because there is no known cure for it short of removing a damaged kidney from a patient's body. "There is no effective chemotherapy to treat renal cell carcinoma," said Giaccia, also a researcher at the Stanford Cancer Center. "Patients still succumb."

... more about:
»Disease »Giaccia »Molecule »STF-62247 »Sutphin »VHL

Almost 54,400 people in the United States will be diagnosed with kidney cancer this year, and about 13,000 will die from the disease, according to the American Cancer Society. Radiotherapy, a powerful weapon used to fight cancer, has also proven to be ineffective in killing kidney cancer, in contrast to other types of cancer, Giaccia said.

This new research could lead to a treatment to save patients from losing one of their two kidneys. The organs are responsible for filtering blood, controlling blood pressure and preventing anemia, among other tasks.

Giaccia's work focuses on the von Hippel-Lindau tumor suppressor gene, or VHL gene, which normally slows tumor growth in humans but does not work in 75 percent of kidney tumor cells. Giaccia's team searched for a small molecule that would kill cancer cells when this VHL gene is broken. They found their weapon in a molecule called STF-62247.

While STF-62247 is toxic to kidney cancer, it is generally harmless to most other cells in the human body, as they carry a working VHL gene, Giaccia said.

As an added benefit, Giaccia said, patients treated with STF-62247 should not suffer some of chemotherapy's infamous side effects, like nausea and hair loss, because STF-62247 is not toxic to the entire body.

Clinical trials could begin "in the next couple years," Giaccia said.

Stanford co-author and postdoctoral fellow Denise A. Chan, PhD, said she believed the new findings could affect how all types of cancer are treated in the future.

This study is one of the first to identify a trait unique to a certain form of cancer - in this case, kidney cancer's deficient VHL gene - and exploit it to defeat the disease, Chan said. She predicted other scientists soon would follow suit, looking for characteristics in other cancers that also could be manipulated.

Researchers' motivation could be twofold, the study's authors said: to find cures for deadly cancers, and to rein in the debilitating side effects caused by many current cancer treatments.

"These results can be extended far beyond kidney cancer," Chan said.

The findings also speak well for Stanford's High-Throughput BioScience Center, which opened in 2004. The results of this study are some of the first using the center's equipment.

The high-throughput equipment at Stanford can analyze thousands of molecules for their cytotoxicity at the same time, allowing researchers like those in Giaccia's lab to search for hidden genes and molecules that previously would have been quite laborious to find.

Without the center, "This work would not have been possible," said Stanford co-author Patrick Sutphin, MD. The findings have special significance for Sutphin, who worked with the Stanford team before moving on to his internship in medicine at Massachusetts General Hospital in Boston. In 1995, when Sutphin was a sophomore in college, his grandfather was diagnosed with kidney cancer and died three months later, he said.

The experience of losing his grandfather to kidney cancer helped motivate Sutphin to study the disease. His hope, Sutphin said, "is that one day our collective research will result in new drugs that are more effective than traditional drugs, and without the toxic side effects."

Krista Conger | EurekAlert!
Further information:
http://mednews.stanford.edu

Further reports about: Disease Giaccia Molecule STF-62247 Sutphin VHL

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>