Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers find molecule that kills kidney cancer cells

09.07.2008
Kidney cancer patients generally have one option for beating their disease: surgery to remove the organ.

But that could change, thanks to a new molecule found by Stanford University School of Medicine researchers that kills kidney cancer cells. Ideally, the researchers said, a drug created from this molecule would help fight the life-threatening disease while leaving patients' kidneys intact.

"You now have a potential means of going after a disease that's been difficult to treat," said Amato Giaccia, PhD, professor and director of radiation oncology and radiation biology at the medical school. His findings will be published in the journal Cancer Cell on July 8.

Giaccia said his lab focused on renal cell carcinoma, or kidney cancer, because there is no known cure for it short of removing a damaged kidney from a patient's body. "There is no effective chemotherapy to treat renal cell carcinoma," said Giaccia, also a researcher at the Stanford Cancer Center. "Patients still succumb."

... more about:
»Disease »Giaccia »Molecule »STF-62247 »Sutphin »VHL

Almost 54,400 people in the United States will be diagnosed with kidney cancer this year, and about 13,000 will die from the disease, according to the American Cancer Society. Radiotherapy, a powerful weapon used to fight cancer, has also proven to be ineffective in killing kidney cancer, in contrast to other types of cancer, Giaccia said.

This new research could lead to a treatment to save patients from losing one of their two kidneys. The organs are responsible for filtering blood, controlling blood pressure and preventing anemia, among other tasks.

Giaccia's work focuses on the von Hippel-Lindau tumor suppressor gene, or VHL gene, which normally slows tumor growth in humans but does not work in 75 percent of kidney tumor cells. Giaccia's team searched for a small molecule that would kill cancer cells when this VHL gene is broken. They found their weapon in a molecule called STF-62247.

While STF-62247 is toxic to kidney cancer, it is generally harmless to most other cells in the human body, as they carry a working VHL gene, Giaccia said.

As an added benefit, Giaccia said, patients treated with STF-62247 should not suffer some of chemotherapy's infamous side effects, like nausea and hair loss, because STF-62247 is not toxic to the entire body.

Clinical trials could begin "in the next couple years," Giaccia said.

Stanford co-author and postdoctoral fellow Denise A. Chan, PhD, said she believed the new findings could affect how all types of cancer are treated in the future.

This study is one of the first to identify a trait unique to a certain form of cancer - in this case, kidney cancer's deficient VHL gene - and exploit it to defeat the disease, Chan said. She predicted other scientists soon would follow suit, looking for characteristics in other cancers that also could be manipulated.

Researchers' motivation could be twofold, the study's authors said: to find cures for deadly cancers, and to rein in the debilitating side effects caused by many current cancer treatments.

"These results can be extended far beyond kidney cancer," Chan said.

The findings also speak well for Stanford's High-Throughput BioScience Center, which opened in 2004. The results of this study are some of the first using the center's equipment.

The high-throughput equipment at Stanford can analyze thousands of molecules for their cytotoxicity at the same time, allowing researchers like those in Giaccia's lab to search for hidden genes and molecules that previously would have been quite laborious to find.

Without the center, "This work would not have been possible," said Stanford co-author Patrick Sutphin, MD. The findings have special significance for Sutphin, who worked with the Stanford team before moving on to his internship in medicine at Massachusetts General Hospital in Boston. In 1995, when Sutphin was a sophomore in college, his grandfather was diagnosed with kidney cancer and died three months later, he said.

The experience of losing his grandfather to kidney cancer helped motivate Sutphin to study the disease. His hope, Sutphin said, "is that one day our collective research will result in new drugs that are more effective than traditional drugs, and without the toxic side effects."

Krista Conger | EurekAlert!
Further information:
http://mednews.stanford.edu

Further reports about: Disease Giaccia Molecule STF-62247 Sutphin VHL

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>