Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential treatment for TB solves puzzle

08.07.2008
Scientists have uncovered a new target for the potential treatment of TB, finally resolving a long-running debate about how the bacterial cell wall is built. The research, published in the July issue of Microbiology reveals several molecules that could be developed into drugs to treat tuberculosis.

Multi drug-resistant strains of Mycobacterium tuberculosis, the bacterium that causes TB, sparked concern but the recent emergence of extensively drug-resistant strains (XDR-TB) means the search for new treatments is imperative.

Unlike human cells, bacteria have cell walls. Molecules called mycolic acids form a vital part of these walls. To produce them, bacteria carry out several processes but until recently, scientists were unsure of the genes that control each step. One vital step is dehydration - the removal of a water molecule to lengthen the acid chain. Researchers from the University of Birmingham have shown that the gene Rv0636 controls this step, which provides new avenues for the development of treatments for TB.

"FAS-II is a group of enzymes that work together to carry out dehydration," said Professor Gurdyal Besra from the University of Birmingham. "We know that the molecules NAS-21 and NAS-91 can stop these enzymes from building cell walls, so we looked at their effect on Mycobacteria. We also wanted to find out if one of the enzymes is coded for by the gene Rv0636."

... more about:
»Besra »Molecule »Rv0636 »Tuberculosis »enzyme

Professor Besra and his colleagues made modifications to NAS-21 and NAS-91, making several analogues based on the original molecules. They then tested these analogues to see if they stopped the enzymes from working. "Both series of compounds demonstrated activity against the FAS-II enzymes alone," said Professor Besra. "When we tested them against live bacterial cells we noticed that some of the analogues stopped the cells from building mycolic acids, which effectively killed them.

"We also tested them on bacteria that were overexpressing Rv0636, which meant they were producing extra enzymes. These cells were resistant to NAS-21 and NAS-91, suggesting that the gene Rv0636 does code for an enzyme in the FAS-II complex," said Professor Besra. "So we have solved the mystery.

The researchers have also identified a new class of compounds that could be developed into successful treatments for tuberculosis that are urgently required in the future. "The emergence of drug-resistant strains of Mycobacterium tuberculosis has highlighted the need for new TB drugs. We hope our discovery will lead to a new rationale for the design of treatments," said Professor Besra.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Besra Molecule Rv0636 Tuberculosis enzyme

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>