Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery explains how cold sore virus hides during inactive phase

04.07.2008
Now that Duke University Medical Center scientists have figured out how the virus that causes cold sores hides out, they may have a way to wake it up and kill it.

Cold sores, painful, unsightly blemishes around the mouth, have so far evaded a cure or even prevention. They're known to be caused by the herpes simplex virus 1 (HSV1), which lies dormant in the trigeminal nerve of the face until triggered to reawaken by excessive sunlight, fever, or other stresses.

"We have provided a molecular understanding of how HSV1 hides and then switches back and forth between the latent (hidden) and active phases," said Bryan Cullen, Duke professor of molecular genetics and microbiology.

His group's findings, published in Nature, also provide a framework for studying other latent viruses, such as the chicken pox virus, which can return later in life as a case of shingles, and herpes simplex 2 virus, a genitally transmitted virus that also causes painful sores, Cullen said.

... more about:
»HSV1 »LAT »MicroRNAs »RNA »hides »sore

Most of the time, HSV1 lives quietly for years, out of reach of any therapy we have against it. It does not replicate itself during this time and only produces one molecular product, called latency associated transcript RNA or LAT RNA.

"It has always been a mystery what this product, LAT RNA, does," Cullen said. "Usually viral RNAs exist to make proteins that are of use to the virus, but this LAT RNA is extremely unstable and does not make any proteins."

In studies of mice, the team showed that the LAT RNA is processed into smaller strands, called microRNAs, that block production of the proteins that make the virus turn on active replication. As long as the supply of microRNAs is sufficient, the virus stays dormant.

After a larger stress, however, the virus starts making more messenger RNA than the supply of microRNAs can block, and protein manufacturing begins again. This tips the balance, and the virus ultimately makes proteins that begin active viral replication.

The new supply of viruses then travels back down the trigeminal nerve, to the site of the initial infection at the mouth. A cold sore always erupts in the same place and is the source of viruses that might infect another person, either from direct contact, or sharing eating utensils or towels, Cullen said.

The approach to curing this nuisance would be a combination therapy, Cullen said. "Inactive virus is completely untouchable by any treatment we have. Unless you activate the virus, you can't kill it," he said.

Cullen and his team are testing a new drug designed to very precisely bind to the microRNAs that keep the virus dormant. If it works, the virus would become activated and start replicating.

Once the virus is active, a patient would then take acyclovir, a drug that effectively kills replicating HSV1.

"In principle, you could activate and then kill all of the virus in a patient," Cullen said. "This would completely cure a person, and you would never get another cold sore."

He and the team are working with drug development companies in animal trials to begin to answer questions about how to deliver this drug most effectively.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: HSV1 LAT MicroRNAs RNA hides sore

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>