Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery explains how cold sore virus hides during inactive phase

04.07.2008
Now that Duke University Medical Center scientists have figured out how the virus that causes cold sores hides out, they may have a way to wake it up and kill it.

Cold sores, painful, unsightly blemishes around the mouth, have so far evaded a cure or even prevention. They're known to be caused by the herpes simplex virus 1 (HSV1), which lies dormant in the trigeminal nerve of the face until triggered to reawaken by excessive sunlight, fever, or other stresses.

"We have provided a molecular understanding of how HSV1 hides and then switches back and forth between the latent (hidden) and active phases," said Bryan Cullen, Duke professor of molecular genetics and microbiology.

His group's findings, published in Nature, also provide a framework for studying other latent viruses, such as the chicken pox virus, which can return later in life as a case of shingles, and herpes simplex 2 virus, a genitally transmitted virus that also causes painful sores, Cullen said.

... more about:
»HSV1 »LAT »MicroRNAs »RNA »hides »sore

Most of the time, HSV1 lives quietly for years, out of reach of any therapy we have against it. It does not replicate itself during this time and only produces one molecular product, called latency associated transcript RNA or LAT RNA.

"It has always been a mystery what this product, LAT RNA, does," Cullen said. "Usually viral RNAs exist to make proteins that are of use to the virus, but this LAT RNA is extremely unstable and does not make any proteins."

In studies of mice, the team showed that the LAT RNA is processed into smaller strands, called microRNAs, that block production of the proteins that make the virus turn on active replication. As long as the supply of microRNAs is sufficient, the virus stays dormant.

After a larger stress, however, the virus starts making more messenger RNA than the supply of microRNAs can block, and protein manufacturing begins again. This tips the balance, and the virus ultimately makes proteins that begin active viral replication.

The new supply of viruses then travels back down the trigeminal nerve, to the site of the initial infection at the mouth. A cold sore always erupts in the same place and is the source of viruses that might infect another person, either from direct contact, or sharing eating utensils or towels, Cullen said.

The approach to curing this nuisance would be a combination therapy, Cullen said. "Inactive virus is completely untouchable by any treatment we have. Unless you activate the virus, you can't kill it," he said.

Cullen and his team are testing a new drug designed to very precisely bind to the microRNAs that keep the virus dormant. If it works, the virus would become activated and start replicating.

Once the virus is active, a patient would then take acyclovir, a drug that effectively kills replicating HSV1.

"In principle, you could activate and then kill all of the virus in a patient," Cullen said. "This would completely cure a person, and you would never get another cold sore."

He and the team are working with drug development companies in animal trials to begin to answer questions about how to deliver this drug most effectively.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: HSV1 LAT MicroRNAs RNA hides sore

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>