Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on the molecular basis of crib death

04.07.2008
Scientists develop a mouse model of Sudden Infant Death Syndrome

Sudden Infant Death Syndrome (SIDS) is a condition that unexpectedly and unexplainably takes the lives of seemingly healthy babies aged between a month and a year.

Now researchers of the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, have developed a mouse model of the so-called crib or cot death, which remains the leading cause of death during the first year of life in developed countries. The model, published in this week’s issue of Science, reveals that an imbalance of the neuronal signal serotonin in the brainstem is sufficient to cause sudden death in mice.

The brainstem, the lower part of the brain that forms the link to the spinal cord, coordinates many fundamental functions including control over cardiovascular and respiratory systems. Victims of SIDS show alterations in those brainstem neurons that communicate using the signalling molecule serotonin. Cornelius Gross and his group at the EMBL Mouse Biology Unit modified the serotonin system of mice to understand the role of this signalling molecule in the brainstem. They overexpressed an important receptor that regulates serotonin signalling, called serotonin 1A autoreceptor.

... more about:
»SIDS »Serotonin »brainstem

“At first sight the mice were normal. But then they suffered sporadic and unpredictable drops in heart rate and body temperature. More than half of the mice eventually died of these crises during a restricted period of early life. It was at that point that we thought it might have something to do with SIDS,” says Gross.

Until now it was unclear how changes in serotonin signalling in the brainstem of SIDS infants are involved in sudden death. The findings in the mouse show that deficits in serotonin signalling in the brainstem can be sufficient to cause sudden death and strongly support the idea that a congenital serotonin defect could play a critical role in SIDS.

Serotonin neurons in the brainstem communicate to nerve cells in the spinal cord that innervate the heart and organs involved in temperature regulation such as brown fat tissue. This signalling is defective in the mouse model of SIDS. For example, when placed into a cold chamber the animals cannot properly activate brown fat tissue to produce heat. This inability to activate fundamental body systems under certain conditions is likely to explain why the mice succumb to sudden death.

While a complete block of serotonin signalling does not lead to death, upsetting its intricate balance by overexpressing serotonin 1A autoreceptor can. In response to serotonin the receptor initiates a negative feedback mechanism that reduces serotonin release and dampens down the signal to the body. The researchers caution, however, that it is unlikely that the exact same molecular mechanism leads to SIDS in humans. Nevertheless, the mouse model will help to shed light on how serotonin signalling, when dysfunctional, can be life-threatening.

“We hope the mouse model will help identify risk factors for SIDS. One open question is whether like in SIDS, the animals die during sleep and whether we can identify which mice will die by looking at their heart rate or body temperature before the crisis. Ultimately, we hope it will give new ideas to doctors about how to diagnose babies at risk for SIDS,” says Enrica Audero, who carried out the research in Gross’ lab.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de

Further reports about: SIDS Serotonin brainstem

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>