Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes Could Aid Understanding of Retrovirus Transmission Between Human Cells

02.07.2008
Recent findings by medical researchers indicate that naturally occurring nanotubes may serve as tunnels that protect retroviruses and bacteria in transit from diseased to healthy cells — a fact that may explain why vaccines fare poorly against some invaders.

To better study the missions of these intercellular nanotubes, scientists have sought the means to form them quickly and easily in test tubes.

Sandia National Laboratories researchers have now learned serendipitously to form nanotubes with surprising ease.

“Our work is the first to show that the formation of nanotubes is not complicated, but can be a general effect of protein-membrane interactions alone,” says Darryl Sasaki of Sandia’s Bioscience and Energy Center.

... more about:
»Lipid »Membrane »Nanotube »Sasaki »tubes

Sandia is a National Nuclear Security Administration laboratory.

The tunnel-like structures have been recognized only recently as tiny but important bodily channels for the good, the bad, and the informational.

In addition to providing protected transport to certain diseases, the nanotubes also seem to help trundle bacteria to their doom in the tentacles of microphages. Lastly, the nanotubes may provide avenues to send and receive information (in the form of chemical molecules) from cell to cell far faster than their random dispersal into the bloodstream would permit.

Given the discovery of this radically different transportation system operating within human tissues, it was natural for researchers to attempt to duplicate the formation of the nanotubes. In their labs, they experimented with giant lipid vesicles that appeared to mimic key aspects of the cellular membrane.

Giant lipid vesicles resemble micron-sized spherical soap bubbles that exist in water. They are composed of a lipid bilayer membrane only five nanometers thick.

The object for experimenters was to create conditions in which the spheres would morph into cylinders of nanometer radii.

But researchers had difficulties, says Sasaki, perhaps because they used a composite lipid called egg PC that requires unnecessarily high energies to bend into a tubular shape.

Egg PC is inexpensive, readily available, and offers good, stable membrane properties. It is the usual lipid of choice in forming nanocylinders via mechanical stretching techniques.

But Sandia postdoctoral researcher Haiqing Lui instead used POPC — a single pure lipid requiring half the bending energy of egg PC.

She was trying to generate nanotubes by a completely different approach that involved the use of motor proteins to stretch naturally occurring membranes into tubes.

Working with Sandia researcher George Bachand, she serendipitously found that interaction of the POPC membrane with a high affinity protein called streptavidin alone was enough to form the nanotubes.

“Perhaps this information — linking membrane bending energy with nanotube formation — may provide some clue about the membrane structure and the cell’s ability to form such intercellular connections,” Sasaki says.

The formation was confirmed by Sandia researcher Carl Hayden, who characterized the nanotube formation through a confocal imaging microscope. The custom instrument allows pixel-by-pixel examination of the protein interaction with the membranes comprising the nanotubes by detecting the spectrum and lifetimes of fluorescent labels on the proteins.

Nanotube formation had been noticed previously by cell biologists, but they had dismissed the tiny outgrowths as “junk — an aberration of cells growing in culture,” says Sasaki. “The reason they were only noticed recently as trafficking routes is because of labeling studies that marked organelles and proteins. This allowed a focused look at what these nanostructures might be used for.”

It became clear, says Sasaki, that the organelles were being transported with “specific directionality” on the backs of motor proteins within the tubes, rather than randomly.

Three-dimensional networks of nanotubes also are found to be created by macrophages — part of the police force of the body — grown in culture, says George. The tubes in appearance and function resemble a kind of spider web, capturing bacterium and transporting them to the macrophages, which eat them.

Other paper authors include postdoc Hahkjoon Kim and summer intern Elsa Abate.

The lipid work is supported by Sandia’s Laboratory Directed Research and Development office. Motor protein work is supported by DOE’s Office of Basic Energy Sciences.

Results were published in the American Chemical Society’s Langmuir Journal in mid-March.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | newswise
Further information:
http://www.sandia.gov

Further reports about: Lipid Membrane Nanotube Sasaki tubes

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>