Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find how neural activity spurs blood flow in the brain

Newfound mechanisms could bolster understanding of brain imaging, aging's effects

New research from Harvard University neuroscientists has pinpointed exactly how neural activity boosts blood flow to the brain. The finding has important implications for our understanding of common brain imaging techniques such as fMRI, which uses blood flow in the brain as a proxy for neural activity.

The research is described in the June 26 issue of the journal Neuron.

"When you see a brain image from fMRI studies, you are actually looking at changes in blood flow and oxygenation," says Venkatesh N. Murthy, professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences. "But because of the tight coupling between neural activity and blood flow, we are able to use the blood flow changes as a surrogate for brain activity. A better understanding of exactly how brain activity boosts blood flow should help us better read this process in reverse, which is what we do when interpreting fMRI images."

... more about:
»astrocytes »neural »neurovascular

While it represents only about 5 percent of the human body's mass, the brain consumes 20 percent of the oxygen carried in its blood. Unlike muscle and other types of tissue, the brain has no internal energy stores, so all its metabolic needs must be met through the continuous flow of blood.

Murthy and colleagues studied mice and found that neurovascular coupling occurs through intermediary cells called astrocytes. By manipulating calcium levels, astrocytes can dilate or constrict blood vessels, depending on whether or not the cells are bound by neurotransmitters.

When a region of the brain becomes active, neurotransmitters begin to trickle out of that area's neural circuitry. The most common of these neurotransmitters in the mammalian brain, glutamate, is widely released at synapses and binds to astrocytes as well as to postsynaptic receptors. Murthy's group found that after binding glutamate, astrocytes elevate their intracellular calcium levels, dilating blood vessels and increasing blood flow to that region of the nervous system.

Murthy and colleagues studied this process in the olfactory bulb, which processes odors.

"When a mouse encounters a scent, discrete loci in its olfactory bulb are activated, which in turn increases blood flow in those spots," Murthy says. "We measured all this using sophisticated optical microscopy, actually counting the number and rate of red blood cells passing through capillaries in the area. In addition to showing directly that astrocytes are involved in neurovascular coupling, we discovered that there are multiple molecular signaling pathways involved."

The new research by Murthy and colleagues lays the groundwork for further study of how this exquisite neurovascular coupling may go awry in neurodegenerative diseases, such as Alzheimer's disease, as well as in the normally aging brain. A growing body of evidence suggests that as people age -- and especially with the onset of neurodegenerative disease -- neurovascular coupling can be impaired. It's still unknown whether this impairment can add to the cognitive defects associated with both healthy and diseased aging.

Steve Bradt | EurekAlert!
Further information:

Further reports about: astrocytes neural neurovascular

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>