Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find how neural activity spurs blood flow in the brain

01.07.2008
Newfound mechanisms could bolster understanding of brain imaging, aging's effects

New research from Harvard University neuroscientists has pinpointed exactly how neural activity boosts blood flow to the brain. The finding has important implications for our understanding of common brain imaging techniques such as fMRI, which uses blood flow in the brain as a proxy for neural activity.

The research is described in the June 26 issue of the journal Neuron.

"When you see a brain image from fMRI studies, you are actually looking at changes in blood flow and oxygenation," says Venkatesh N. Murthy, professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences. "But because of the tight coupling between neural activity and blood flow, we are able to use the blood flow changes as a surrogate for brain activity. A better understanding of exactly how brain activity boosts blood flow should help us better read this process in reverse, which is what we do when interpreting fMRI images."

... more about:
»astrocytes »neural »neurovascular

While it represents only about 5 percent of the human body's mass, the brain consumes 20 percent of the oxygen carried in its blood. Unlike muscle and other types of tissue, the brain has no internal energy stores, so all its metabolic needs must be met through the continuous flow of blood.

Murthy and colleagues studied mice and found that neurovascular coupling occurs through intermediary cells called astrocytes. By manipulating calcium levels, astrocytes can dilate or constrict blood vessels, depending on whether or not the cells are bound by neurotransmitters.

When a region of the brain becomes active, neurotransmitters begin to trickle out of that area's neural circuitry. The most common of these neurotransmitters in the mammalian brain, glutamate, is widely released at synapses and binds to astrocytes as well as to postsynaptic receptors. Murthy's group found that after binding glutamate, astrocytes elevate their intracellular calcium levels, dilating blood vessels and increasing blood flow to that region of the nervous system.

Murthy and colleagues studied this process in the olfactory bulb, which processes odors.

"When a mouse encounters a scent, discrete loci in its olfactory bulb are activated, which in turn increases blood flow in those spots," Murthy says. "We measured all this using sophisticated optical microscopy, actually counting the number and rate of red blood cells passing through capillaries in the area. In addition to showing directly that astrocytes are involved in neurovascular coupling, we discovered that there are multiple molecular signaling pathways involved."

The new research by Murthy and colleagues lays the groundwork for further study of how this exquisite neurovascular coupling may go awry in neurodegenerative diseases, such as Alzheimer's disease, as well as in the normally aging brain. A growing body of evidence suggests that as people age -- and especially with the onset of neurodegenerative disease -- neurovascular coupling can be impaired. It's still unknown whether this impairment can add to the cognitive defects associated with both healthy and diseased aging.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: astrocytes neural neurovascular

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>