Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find how neural activity spurs blood flow in the brain

01.07.2008
Newfound mechanisms could bolster understanding of brain imaging, aging's effects

New research from Harvard University neuroscientists has pinpointed exactly how neural activity boosts blood flow to the brain. The finding has important implications for our understanding of common brain imaging techniques such as fMRI, which uses blood flow in the brain as a proxy for neural activity.

The research is described in the June 26 issue of the journal Neuron.

"When you see a brain image from fMRI studies, you are actually looking at changes in blood flow and oxygenation," says Venkatesh N. Murthy, professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences. "But because of the tight coupling between neural activity and blood flow, we are able to use the blood flow changes as a surrogate for brain activity. A better understanding of exactly how brain activity boosts blood flow should help us better read this process in reverse, which is what we do when interpreting fMRI images."

... more about:
»astrocytes »neural »neurovascular

While it represents only about 5 percent of the human body's mass, the brain consumes 20 percent of the oxygen carried in its blood. Unlike muscle and other types of tissue, the brain has no internal energy stores, so all its metabolic needs must be met through the continuous flow of blood.

Murthy and colleagues studied mice and found that neurovascular coupling occurs through intermediary cells called astrocytes. By manipulating calcium levels, astrocytes can dilate or constrict blood vessels, depending on whether or not the cells are bound by neurotransmitters.

When a region of the brain becomes active, neurotransmitters begin to trickle out of that area's neural circuitry. The most common of these neurotransmitters in the mammalian brain, glutamate, is widely released at synapses and binds to astrocytes as well as to postsynaptic receptors. Murthy's group found that after binding glutamate, astrocytes elevate their intracellular calcium levels, dilating blood vessels and increasing blood flow to that region of the nervous system.

Murthy and colleagues studied this process in the olfactory bulb, which processes odors.

"When a mouse encounters a scent, discrete loci in its olfactory bulb are activated, which in turn increases blood flow in those spots," Murthy says. "We measured all this using sophisticated optical microscopy, actually counting the number and rate of red blood cells passing through capillaries in the area. In addition to showing directly that astrocytes are involved in neurovascular coupling, we discovered that there are multiple molecular signaling pathways involved."

The new research by Murthy and colleagues lays the groundwork for further study of how this exquisite neurovascular coupling may go awry in neurodegenerative diseases, such as Alzheimer's disease, as well as in the normally aging brain. A growing body of evidence suggests that as people age -- and especially with the onset of neurodegenerative disease -- neurovascular coupling can be impaired. It's still unknown whether this impairment can add to the cognitive defects associated with both healthy and diseased aging.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: astrocytes neural neurovascular

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>