Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic Grief Activates Pleasure Areas of the Brain

24.06.2008
Scientists at UCLA suggest that long-term grief activates neurons in the reward centers of the brain, possibly giving these memories addiction-like properties.

Grief is universal, and most of us will probably experience the pain grief brings at some point in our lives, usually with the death of a loved one. In time, we move on, accepting the loss.

But for a substantial minority, it's impossible to let go, and even years later, any reminder of their loss — a picture, a memory — brings on a fresh wave of grief and yearning. The question is, why? Why do some grieve and ultimately adapt, while others can't get over the loss of someone held dear?

Reporting in the journal NeuroImage, scientists at UCLA suggest that such long-term or "complicated" grief activates neurons in the reward centers of the brain, possibly giving these memories addiction-like properties. Their research is currently available in the journal's online edition.

... more about:
»Brain »Grief »pain

This study is the first to compare those with complicated and noncomplicated grief, and future research in this area may help psychologists do a better job of treating those with complicated grief, according to Mary-Frances O'Connor, UCLA assistant professor of psychiatry and lead author of the study.

"The idea is that when our loved ones are alive, we get a rewarding cue from seeing them or things that remind us of them," O'Connor said. "After the loved one dies, those who adapt to the loss stop getting this neural reward. But those who don't adapt continue to crave it, because each time they do see a cue, they still get that neural reward.

"Of course, all of this is outside of conscious thought, so there isn't an intention about it," she said.

The study analyzed whether those with complicated grief had greater activity occurring in either the brain's reward network or pain network than those with noncomplicated grief. The researchers looked at 23 women who had lost a mother or a sister to breast cancer. (Grief is very problematic among survivors of breast cancer patients, particularly among female family members who have increased risk based on their family history). They found that, of that number, 11 had complicated grief, and 12 had the more normal, noncomplicated grief.

Each of the study participants brought a photograph of their deceased loved one and were shown this picture while undergoing brain scanning by functional magnetic resonance imaging (fMRI). Next, they were scanned while looking at a photograph of a female stranger.

The authors looked for activity in the nucleus accumbens, a region of the brain most commonly associated with reward and one that has also been shown to play a role in social attachment, such as sibling and maternal affiliation. They also examined activity in the pain network of the brain, including the dorsal anterior cingulate cortex and the insula, which has been implicated in both physical and social pain. They found that while both groups had activation in the pain network of the brain after viewing a picture of their loved one, only individuals with complicated grief showed significant nucleus accumbens activations.

Complicated grief can be debilitating, involving recurrent pangs of painful emotions, including intense yearning, longing and searching for the deceased, and a preoccupation with thoughts of the loved one. This syndrome has now been defined by an empirically derived set of criteria and is being considered for inclusion in the DSM-V, the psychiatric manual for diagnosing mental disorders.

O'Connor, who is a member of UCLA's Cousins Center for Psychoneuroimmunology, cautions that she is not suggesting that such reveries about the deceased are emotionally satisfying but rather that they may serve in some people as a type of craving for the reward response that may make adapting to the reality of the loss more difficult.

The study was funded by the California Breast Cancer Research Program. Other authors included David K. Wellisch, Annette L. Stanton, Naomi I. Eisenberger, Michael R. Irwin and Matthew D. Lieberman, all of UCLA.

The UCLA Cousins Center for Psychoneuroimmunology brings together research expertise in the behavioral sciences, neuroscience and immunology to understand the interplay of psychological and biological factors in disease and how the resiliency of the human body can be aided by positive behaviors, attitudes and emotions. The center is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders.

Mark Wheeler | newswise
Further information:
http://www.ucla.edu

Further reports about: Brain Grief pain

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>