Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic Grief Activates Pleasure Areas of the Brain

24.06.2008
Scientists at UCLA suggest that long-term grief activates neurons in the reward centers of the brain, possibly giving these memories addiction-like properties.

Grief is universal, and most of us will probably experience the pain grief brings at some point in our lives, usually with the death of a loved one. In time, we move on, accepting the loss.

But for a substantial minority, it's impossible to let go, and even years later, any reminder of their loss — a picture, a memory — brings on a fresh wave of grief and yearning. The question is, why? Why do some grieve and ultimately adapt, while others can't get over the loss of someone held dear?

Reporting in the journal NeuroImage, scientists at UCLA suggest that such long-term or "complicated" grief activates neurons in the reward centers of the brain, possibly giving these memories addiction-like properties. Their research is currently available in the journal's online edition.

... more about:
»Brain »Grief »pain

This study is the first to compare those with complicated and noncomplicated grief, and future research in this area may help psychologists do a better job of treating those with complicated grief, according to Mary-Frances O'Connor, UCLA assistant professor of psychiatry and lead author of the study.

"The idea is that when our loved ones are alive, we get a rewarding cue from seeing them or things that remind us of them," O'Connor said. "After the loved one dies, those who adapt to the loss stop getting this neural reward. But those who don't adapt continue to crave it, because each time they do see a cue, they still get that neural reward.

"Of course, all of this is outside of conscious thought, so there isn't an intention about it," she said.

The study analyzed whether those with complicated grief had greater activity occurring in either the brain's reward network or pain network than those with noncomplicated grief. The researchers looked at 23 women who had lost a mother or a sister to breast cancer. (Grief is very problematic among survivors of breast cancer patients, particularly among female family members who have increased risk based on their family history). They found that, of that number, 11 had complicated grief, and 12 had the more normal, noncomplicated grief.

Each of the study participants brought a photograph of their deceased loved one and were shown this picture while undergoing brain scanning by functional magnetic resonance imaging (fMRI). Next, they were scanned while looking at a photograph of a female stranger.

The authors looked for activity in the nucleus accumbens, a region of the brain most commonly associated with reward and one that has also been shown to play a role in social attachment, such as sibling and maternal affiliation. They also examined activity in the pain network of the brain, including the dorsal anterior cingulate cortex and the insula, which has been implicated in both physical and social pain. They found that while both groups had activation in the pain network of the brain after viewing a picture of their loved one, only individuals with complicated grief showed significant nucleus accumbens activations.

Complicated grief can be debilitating, involving recurrent pangs of painful emotions, including intense yearning, longing and searching for the deceased, and a preoccupation with thoughts of the loved one. This syndrome has now been defined by an empirically derived set of criteria and is being considered for inclusion in the DSM-V, the psychiatric manual for diagnosing mental disorders.

O'Connor, who is a member of UCLA's Cousins Center for Psychoneuroimmunology, cautions that she is not suggesting that such reveries about the deceased are emotionally satisfying but rather that they may serve in some people as a type of craving for the reward response that may make adapting to the reality of the loss more difficult.

The study was funded by the California Breast Cancer Research Program. Other authors included David K. Wellisch, Annette L. Stanton, Naomi I. Eisenberger, Michael R. Irwin and Matthew D. Lieberman, all of UCLA.

The UCLA Cousins Center for Psychoneuroimmunology brings together research expertise in the behavioral sciences, neuroscience and immunology to understand the interplay of psychological and biological factors in disease and how the resiliency of the human body can be aided by positive behaviors, attitudes and emotions. The center is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders.

Mark Wheeler | newswise
Further information:
http://www.ucla.edu

Further reports about: Brain Grief pain

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>