Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic Grief Activates Pleasure Areas of the Brain

24.06.2008
Scientists at UCLA suggest that long-term grief activates neurons in the reward centers of the brain, possibly giving these memories addiction-like properties.

Grief is universal, and most of us will probably experience the pain grief brings at some point in our lives, usually with the death of a loved one. In time, we move on, accepting the loss.

But for a substantial minority, it's impossible to let go, and even years later, any reminder of their loss — a picture, a memory — brings on a fresh wave of grief and yearning. The question is, why? Why do some grieve and ultimately adapt, while others can't get over the loss of someone held dear?

Reporting in the journal NeuroImage, scientists at UCLA suggest that such long-term or "complicated" grief activates neurons in the reward centers of the brain, possibly giving these memories addiction-like properties. Their research is currently available in the journal's online edition.

... more about:
»Brain »Grief »pain

This study is the first to compare those with complicated and noncomplicated grief, and future research in this area may help psychologists do a better job of treating those with complicated grief, according to Mary-Frances O'Connor, UCLA assistant professor of psychiatry and lead author of the study.

"The idea is that when our loved ones are alive, we get a rewarding cue from seeing them or things that remind us of them," O'Connor said. "After the loved one dies, those who adapt to the loss stop getting this neural reward. But those who don't adapt continue to crave it, because each time they do see a cue, they still get that neural reward.

"Of course, all of this is outside of conscious thought, so there isn't an intention about it," she said.

The study analyzed whether those with complicated grief had greater activity occurring in either the brain's reward network or pain network than those with noncomplicated grief. The researchers looked at 23 women who had lost a mother or a sister to breast cancer. (Grief is very problematic among survivors of breast cancer patients, particularly among female family members who have increased risk based on their family history). They found that, of that number, 11 had complicated grief, and 12 had the more normal, noncomplicated grief.

Each of the study participants brought a photograph of their deceased loved one and were shown this picture while undergoing brain scanning by functional magnetic resonance imaging (fMRI). Next, they were scanned while looking at a photograph of a female stranger.

The authors looked for activity in the nucleus accumbens, a region of the brain most commonly associated with reward and one that has also been shown to play a role in social attachment, such as sibling and maternal affiliation. They also examined activity in the pain network of the brain, including the dorsal anterior cingulate cortex and the insula, which has been implicated in both physical and social pain. They found that while both groups had activation in the pain network of the brain after viewing a picture of their loved one, only individuals with complicated grief showed significant nucleus accumbens activations.

Complicated grief can be debilitating, involving recurrent pangs of painful emotions, including intense yearning, longing and searching for the deceased, and a preoccupation with thoughts of the loved one. This syndrome has now been defined by an empirically derived set of criteria and is being considered for inclusion in the DSM-V, the psychiatric manual for diagnosing mental disorders.

O'Connor, who is a member of UCLA's Cousins Center for Psychoneuroimmunology, cautions that she is not suggesting that such reveries about the deceased are emotionally satisfying but rather that they may serve in some people as a type of craving for the reward response that may make adapting to the reality of the loss more difficult.

The study was funded by the California Breast Cancer Research Program. Other authors included David K. Wellisch, Annette L. Stanton, Naomi I. Eisenberger, Michael R. Irwin and Matthew D. Lieberman, all of UCLA.

The UCLA Cousins Center for Psychoneuroimmunology brings together research expertise in the behavioral sciences, neuroscience and immunology to understand the interplay of psychological and biological factors in disease and how the resiliency of the human body can be aided by positive behaviors, attitudes and emotions. The center is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders.

Mark Wheeler | newswise
Further information:
http://www.ucla.edu

Further reports about: Brain Grief pain

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>