Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Science Foundation aims to strengthen 'regenerative medicine'

19.06.2008
14 Member Organisations* of the European Science Foundation have launched a key initiative to keep Europe at the forefront of regenerative medicine; broadly defined as the development of stem cell therapies to restore lost, damaged, or ageing cells and tissues in the human body.

Stem cells are the body's 'master cells' that have not yet been programmed to perform a specific function. Most tissues have their own supply of stem cells, and it is becoming clear that if these cells can be given the appropriate biochemical instructions, they can 'differentiate' into new tissue. In this way, for example, stem cells could be seeded into damaged heart muscle to repair it.

Regenerative medicine has many advantages over more conventional ways of repairing or replacing damaged tissues or organs. Because the stem cells are taken from the person being treated, there are no problems with the body's immune system recognising the cells as 'foreign' and attempting to reject them, something that is still a problem with organ transplantation, for example.

To help ensure that Europe retains its competitive edge in the field, the ESF has launched REMEDIC, a research networking programme in regenerative medicine (13 May 2008). For the next five years a steering committee of 13 of Europe's leading specialists in regenerative medicine will organise a series of meetings and workshops to bring together experts to share ideas and develop new collaborations.

... more about:
»Stem »regenerative

"I think this network will be very important to allow scientists in the field to share and disseminate information," says Professor Yrjö Konttinen, of Biomedicum Helsinki in Finland, who chairs the steering committee. "The network is open, so we will be in contact with many different organisations with an interest in the field. We want to meet people, establish joint collaborations with existing programmes and we will also be seeking funding for new initiatives."

REMEDIC will concentrate on the potential of a particular type of cell in the body called mesenchymal stromal cells. These can be obtained from fat tissue and coaxed to differentiate into a range of cell types, including bone, cartilage and muscle. Once the cells are in the relevant tissue, their growth and proliferation can be protected by biomaterials, which are structures implanted into the body that can guide the growth of the new tissue.

REMEDIC's first workshop is planned for mid-August in Helsinki, and a call for short term and exchange visits will be launched in late 2008. REMEDIC is a Research Networking Programme managed by the European Medical Research Councils (EMRC) at the European Science Foundation.

*FWF, Austria; FWO, Belgium; FSS, Denmark; AKA, Finland; DFG, Germany; NWO/ZonMw, Netherlands; RCN, Norway; FCT, Portugal; NURC, Romania; SAV, Slovakia; MICINN, CSIC, Spain; VR, Sweden; SNCF, Switzerland.

Thomas Lau | alfa
Further information:
http://www.esf.org/remedic

Further reports about: Stem regenerative

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>