Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizards pull a wheelie

17.06.2008
Why bother running on hind legs when the four you've been given work perfectly well? This is the question that puzzles Christofer Clemente. For birds and primates, there's a perfectly good answer: birds have converted their forelimbs into wings, and primates have better things to do with their hands.

But why have some lizards gone bipedal? Have they evolved to trot on two feet, or is their upright posture simply a fluke of physics? Curious to find the answer, Clemente and his colleagues Philip Withers, Graham Thompson and David Lloyd decided to test how dragon lizards run on two legs.

But first Clemente had to catch his lizards. Fortunately Thompson was a lizard-tracking master. Driving all over the Australian outback, Clemente and Thompson eventually collected 16 dragon lizard species, ranging from frilled neck lizards to the incredibly rare C. rubens, found only on a remote Western Australian cattle station. Returning to the Perth lab, Clemente and Withers set the lizards running on a treadmill, filming the reptiles until they were all run-out.

Clemente admits that when he started, he thought that the lizards would fall into one of two groups; lizards that mostly ran on two legs, occasionally resorting to four, and lizards that never reared up. Not so. Even the lizards that he'd never seen on two legs in the wild managed an occasional few steps on their hind legs. In fact, the lizards' propensity for running on two legs seemed to be a continuum; C. rubens and P. minor spent only 5% of the time on their hind legs while L. gilberti spent 95% up on two.

... more about:
»Legs »hind »lizards'

Curious to know whether or not bipedalism has evolved, Clemente drew up the lizards' family tree and plotted on the percentage of time each species spent on their rear legs, but there was no correlation. The reptiles had not evolved to move on two feet. Something else was driving them off their front legs; but what?

According to Clemente, other teams had already suggested reasons for the lizards rearing up; maybe running on two legs was faster or more economical than running on all four. But when Clemente analysed the lizard running footage he realised that running on hind legs was more energetically costly, and the bipedal runners were no faster than the quadrupeds. Knowing that Peter Aerts had suggested that lizards improved their manoeuvrability by moving their centre of mass back towards the hips, Clemente wondered whether the lizards' front legs were leaving the ground because of the position of their centre of mass. Maybe they were 'pulling a wheelie'.

Teaming up with David Lloyd and modelling the running lizards' movements as the lizards accelerated, they realised that there was a strong correlation between the lizards' acceleration and their front legs pulling off the ground. Clemente explains that by moving their centre of mass, a turning force acts on the lizards' torso; lifting it off the ground making them run upright.

So running on two legs is a natural consequence of the lizards' acceleration. Clemente adds that 'some dragon lizards have exploited the consequence and chosen to go bipedal because it gives them some advantage, but we have no idea what that advantage is'.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com

Further reports about: Legs hind lizards'

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>