Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell discovery sheds light on placenta development

10.06.2008
Researchers studying embryonic stem cells have explored the first fork in the developmental road, getting a new look at what happens when fertilized eggs differentiate to build either an embryo or a placenta.

By manipulating a specific gene in a mouse blastocyst — the structure that develops from a fertilized egg but is not yet an actual embryo — scientists with the University of Florida's McKnight Brain Institute and the Harvard Stem Cell Institute caused cells destined to build an embryo to instead change direction and build the cell mass that leads to the placenta.

Writing in today's (Monday, June 9) online edition of Nature Genetics, the scientists reveal a cellular signaling mechanism in place at the earliest developmental stage.

Understanding the conditions that cause these cells to go off to different fates may have a bearing on health problems such as ectopic pregnancy, which occurs when the embryo develops outside of the womb in about 1 of 60 pregnancies, or molar pregnancy, which is abnormal tissue growth within the uterus that affects about 1 in every 1,000 pregnancies.

"We originally were exploring factors that might cause embryonic stem cells to become malignant — there is a concern that these cells may cause tumors," said Chi-Wei Lu, Ph.D., an associate neuroscientist at the UF College of Medicine and lead author of the study. "Our experiments led us to discover the signal that initiates the process of embryonic tissue differentiation."

By activating a gene called Ras in cells bathed in a very specific culture medium, scientists were able to cause embryonic stem cells — which originate from the inner cell mass of the blastocyst — to become more like the trophoblastic stem cells that give rise to the placenta from the outer portion of the blastocyst.

Researchers marked these newly minted cells, which they called ES-TS cells, and injected them into mouse embryos. Instead of joining the stem cells that build the embryo, ES-TS cells joined the stem cells that build the placenta. Furthermore, when scientists transferred the engineered mouse embryos to foster mothers, the ES-TS cells went to work exclusively laying the foundation for the placenta.

"This paper highlights the value of embryonic stem cells for understanding early development," said senior author George Q. Daley, M.D., Ph.D., an associate professor of biological chemistry and molecular pharmacology at Harvard Medical School and an associate professor of pediatrics at Children's Hospital Boston. "Embryonic stem cells are more plastic than we had thought. By simply activating the Ras gene, we changed the fate of embryonic stem cells to an entirely unexpected tissue — the placenta. This surprising result has given us an unanticipated insight into early embryo development."

The technique of genetically modifying the cells and growing them in a special medium could be valuable for additional research.

"This is exciting because events that only occur in the early stages of embryonic development are very difficult to study," Lu said. "Just a few models exist, and even in mice, only a limited amount of embryos can be harvested. Now we can culture these cells and have unlimited material to study."

Researchers are only beginning to understand the natural chemical environments that allow for production of different tissues.

"What is nice is that what she has observed in cultures appears to be quite similar to what goes on in early development in animals," said R. Michael Roberts, D.Phil., a professor of molecular biology at the C.S. Bond Life Sciences Center at the University of Missouri-Columbia who did not participate in the research. "Normally, mouse embryonic stem cells aren't easily converted along the pathway to form placental cells, while human embryonic stem cells undergo this transition quite easily. This has always been a puzzle. What she has shown is you can make mouse embryonic stem cells convert unidirectionally to trophoblasts by activating a single gene. This is very helpful for understanding how the placenta develops."

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Embryo Embryonic Placenta Tissue embryonic stem embryonic stem cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>