Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify biomarkers of early-stage pancreatic cancer in mice and man

10.06.2008
Findings bring scientists a big step closer to developing a blood test for early detection

A multicenter team of researchers has identified a panel of proteins linked to early development of pancreatic cancer in mice that applies also to early stages of the disease in humans – a breakthrough that brings scientists a significant step closer to developing a blood test to detect the disease early, when cure rates are highest.

The findings, by senior author Samir "Sam" Hanash, M.D., Ph.D., of Fred Hutchinson Cancer Research Center, will be published in the June 10 issue of PLoS Medicine, a freely available, open-access online journal. Investigators from Massachusetts General Hospital, University of Michigan and Belfer Institute for Innovative Cancer Science at Dana-Farber Cancer Institute collaborated on the research.

"Our team identified, for the first time, protein changes associated with early-stage pancreatic-tumor development in genetically engineered mice that were also found to be associated with the presence of the disease in humans at an early, pre-symptomatic stage," said Hanash, head of the Hutchinson Center's Molecular Diagnostics Program. Hanash is an international leader in the field of proteomics, which seeks to identify clinically relevant trace proteins, or biomarkers, that are leaked by tumors into the blood. Scientists believe that such proteins could be used in screening blood tests for early and more accurate detection of cancer and other diseases.

"Our findings represent a breakthrough in the application of advanced proteomic technologies and mouse models to cancer-biomarker discovery," said Hanash, also a member of the Hutchinson Center's Public Health Sciences Division.

The five-biomarker panel, if developed into a commercial screening test, may be particularly useful when combined with a currently available test that measures a pancreatic-cancer biomarker called CA19.9, which is elevated in 80 percent of newly diagnosed patients but is not linked to asymptomatic, early-stage disease. Together, the biomarker panel and CA19.9 may significantly improve the detection of early-stage disease prior to the onset of symptoms and may also help better distinguish between cancer and pancreatitis, a noncancerous, inflammatory condition.

Early detection of cancer is crucial for long-term survival. Most solid tumors can be cured 90 percent of the time if they're detected and treated early, whereas cure rates for late-stage cancer are about 10 percent. Early detection is particularly relevant to pancreatic cancer, which is the fourth-leading cause of cancer death in the United States, with a five-year survival rate of only 3 percent. Because the disease is asymptomatic in the early stages, most patients are not diagnosed until the cancer has spread beyond the pancreas, which contributes significantly to the poor long-term survival rate.

"There is a substantial challenge in studying the early molecular changes in pancreatic cancer because most patients are diagnosed with advanced-stage disease and so there is a lack of suitable specimens for biomarker discovery," said paper co-author Nabeel Bardeesy, Ph.D., of the Massachusetts General Hospital Cancer Center.

Finding telltale proteins that can signal the earliest stages of cancer development can be like looking for the proverbial needle in a haystack, as blood contains a complex mixture of thousands of proteins. In addition, any two proteins may exist in concentrations more than a million-fold different from one another. "The ones that are likely to be useful for diagnosing cancer are probably the ones that exist at the lower end of the range, which makes them very hard to find with standard methods," Hanash said.

To guide their quest, Hanash and colleagues employed a variety of technologies to identify, measure and analyze blood proteins in mice and man. Since every protein is different, each has the equivalent of a distinguishing molecular "bar code." The goal is to identify protein signatures that are only present in cancer, which may then serve as biomarkers to detect early disease.

A significant boon to biomarker research – and one of the great scientific advances in the past century, according to paper co-author Ronald DePinho, M.D. – has been the incorporation of mouse models into many disciplines of science, including cancer research. "Our ability to now engineer mice with the same mutations that drive specific cancers in humans has provided powerful and accurate model systems to study virtually all aspects of the disease and then translate these new insights into improved prevention, detection and treatment strategies for cancer," said DePinho, director of the Belfer Institute at Dana-Farber Cancer Institute.

For this study, the researchers first analyzed blood samples from genetically engineered mouse models of pancreatic ductal adenocarcinoma at both early and late stages of tumor development. Of nearly 1,500 proteins identified in these mice, five were associated consistently with a precancerous condition known as pancreatic intraepithelial neoplasia, or PanIN, which, if left untreated, eventually progresses to full-blown pancreatic cancer.

The researchers then sought to determine whether the same biomarkers turned up in blood samples obtained from 30 recently diagnosed pancreatic-cancer patients. They also looked for the biomarkers in 13 people with asymptomatic, early-stage pancreatic cancer who had donated blood for another, unrelated study within a year of their cancer diagnosis. For comparison purposes, the researchers analyzed blood from 20 healthy subjects and 15 people diagnosed with chronic pancreatitis.

Next steps in the research will include validating additional candidate biomarkers and further testing of the biomarker panel they have assembled to see how well it distinguishes between pancreatitis and pancreatic cancer. The researchers also want to continue testing the value of a biomarker-panel approach for early detection of pancreatic cancer among those at increased risk, such as people with a strong family history of the disease.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

Further reports about: Biomarker Development Hanash Protein blood diagnosed early-stage pancreatic

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>