Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Bird or Night Owl?

06.06.2008
Novel technique used at Cheltenham Science Festival to measure activity of circadian rhythm genes

Researchers from the School of Medicine, Swansea University took samples from visitors to the Cheltenham Science Festival yesterday (Thursday 5 June 2008) to identify their natural sleep-wake pattern.

“The novel technique we have developed at Swansea is entirely non-invasive, so we can use it at a public event”, explains Sarah Forbes-Robertson, Research Fellow at the School of Medicine, Swansea University. “Previously you needed to take blood samples to obtain the RNA (ribonucleic acid) needed for this type of research. Our technique allows us to get a useable sample just by swabbing the inside of an individual’s cheek.”

A number of different genes control an individual’s ‘natural’ pattern of wake and sleep – otherwise known as their circadian rhythm. The levels of RNA produced by these different genes indicate how active they are at different times of day. One gene known as Per2 produces the highest levels of RNA at around 4am, and is the gene that is associated with sleeping. The gene examined at the Cheltenham Science Festival event, known as REV-ERB, works in opposition to Per2 having its peak activity at around 4pm, and is thought by researchers at Swansea to be the gene associated with wakefulness. Samples were taken at the start (4pm) and end (5pm) of the event at the Cheltenham Science Festival, and are being analysed by the Swansea researchers. Results will be made available to individuals online.

... more about:
»PER2 »RNA »Swansea »activity »circadian »rhythm »sample

“To get a full and accurate picture of someone’s natural circadian rhythm you would need to take samples four hourly over a full day and night, and also look at all the genes involved,” explains Sarah. “But by taking samples at 4pm and 5pm to assess the activity of the REV-ERB gene, we will be able to see if patterns of peak gene expression are shifted forwards or back in time from the norm of 4pm. If your peak is earlier than 4pm it would indicate that you are a natural early bird, if you peak later than 5pm then you are more of a night owl.”

The novel technique for measuring gene expression is currently only being used by Professor Johannes Thome’s research team in the Department of Neuroscience and Molecular Psychiatry at Swansea, but is opening up this field of research as individuals can take part in research whilst continuing with their normal day and night activities. The technique is the first that allows researchers to look at RNA using these mouth swabs, rather than DNA.

One key finding from this work is that humans differ significantly to mice. “It has always been assumed that human genes would work in the same way as those for mice where two genes Per2 and Bmal1 work in opposition, Per2 peaking for sleep and Bmal1 peaking for wakefulness. However, in humans these genes appear to work together with both peaking around the same time,” explains Sarah.

The researchers are now looking at various conditions such as Attention Deficit Hyperactivity Disorder to see if this may be linked to disturbed circadian rhythms. Further work is being carried out to identify if the activity of these genes can be permanently altered through unnatural sleep patterns – in shift work, for example. The technique will also allow researchers to assess whether jet lag cures, such as melatonin tablets, actually do anything to alter gene expression.

“Gene expression can be altered by external factors, such as jet lag”, says Sarah. “One interesting finding is that food affects gene expression, so after lunch Per2 has a small peak, leading to that post lunch slump.”

The non-invasive technique for measuring gene expression may also have applications in other areas of research. “It has been suggested that chemotherapy for cancer patients may be far more effective if administered at certain times of the day. Our techniques might be able to confirm this and explain why”, says Sarah.

Curiosity has of course led Sarah to research her own circadian rhythms. “My peak of Per2 - the ‘sleep’ gene - is at 6am rather than at the usual 4am. So I really do have a genetic excuse for not being able to manage early morning meetings!”

Event Details:
Clocking On
Cheltenham Town Hall
Thursday 5 June 2008 4-5pm
£6 (£5)
Tickets: www.cheltenhamfestivals.com
Box Office: 01242 227979

Sallie Robins | alfa
Further information:
http://www.cheltenhamfestivals.com

Further reports about: PER2 RNA Swansea activity circadian rhythm sample

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>