Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public Funding Impacts Progress of Embryonic Stem Cell Research

06.06.2008
Bolstered by supportive policies and public research dollars, the United Kingdom, Israel, China, Singapore and Australia are producing unusually large shares of human embryonic stem cell research, according to a report from the Georgia Institute of Technology in the June 2008 issue Cell Stem Cell.

Aaron Levine, assistant professor of public policy and author of the book Cloning: A Beginner’s Guide, studied how countries output of research papers related to human embryonic stem cell research compared to their output in less contentious fields.

He found that even though the United States still puts out far more research in this field than any other single country, when one compares the amount of research in human embryonic stem cells to other forms of research in molecular biology and genetics, the U.S. lags behind.

“The U.S. is still the largest producer of research in this field, but compared to other similar fields, our share is smaller,” said Levine, assistant professor in Georgia Tech’s Ivan Allen College of Liberal Arts. “You have to ask yourself, are we happy producing this relatively small share?”

In comparison, the study showed that the U.K. and Israel were producing substantially more research in this area than in other fields. According to the study, the U.K. produced 5.3 percent more research related to human embryonic stem cells than research performed in other areas of molecular biology and genetics, while Israel produced 4.6 percent more research. Levine attributed that to the long-held public and political support of human embryonic stem cell research in those countries.

“Both the U.K. and Israel have long-standing policies that support research in this field,” said Levine, “And this support seems likely to have bolstered scientists’ efforts to set up labs and acquire funding for their research.”

But the biggest surprise was China and Singapore, with China producing 3.2 percent more human embryonic stem cell research than other areas of molecular biology and genetics, and Singapore producing 2.6 percent more research.

“China and Singapore both showed impressive performance in human embryonic stem cell research,” said Levine. “Although these countries are very different, both have been striving to grow their biomedical research communities and it seems likely they focused on human embryonic stem cell research, in part, because they saw that traditional scientific powerhouses like the United States were moving so tentatively in this area.”

Australia had a more mixed policy and a more mixed result. While Australia does allow new stem cell lines to be created from fertility treatments, it explicitly banned the use of stem cells derived from somatic cell nuclear transfer from 2002 to 2006. Beginning in 2006 scientists were allowed to use stem cells from somatic cell nuclear transfer, but under strict regulatory guidelines. That may explain why Levine’s study found that Australia showed a more modest result of producing only 1.6 percent more human embryonic stem cell research than other areas of molecular biology and genetics.

The United States, however, is significantly under-performing in this area. Although Levine’s study found that the U.S. produced 36 percent of the research performed on human embryonic stem cells, far more than any other country, when he compared those studies to other areas of research in molecular biology and genetics, he found that the U.S. had a deficit of 10 percent.

Although the U.S. government is the funding source for 63 percent of academic research and development, federal funds can only be used for studies on a small number of stem cell lines produced before August 9, 2001. As a result, much research in this area in the U.S. is done either with state money or private money.

Given that scientists have less incentive in the private sector to publish research papers, it’s possible that Levine’s metric undercounts the amount of research done in this area in the U.S. But even so, the contribution from the U.S. is still reduced since research that isn’t published does little to increase public knowledge.

But that may change. Venturing where the federal government fears to tread, states like California, New York, Connecticut and Maryland are becoming places researchers can turn to for human embryonic stem cell funding. But Levine thinks that development may complicate matters.

“There are a variety of funding sources out there now, but it makes the field more complicated for scientists to follow the various rules set forth by the states and foundations,” said Levine. “I think scientists would prefer clear oversight from a federal government that’s supportive of their research.”

Levine plans to follow up this current work with a look at how collaboration is affected by these different state policies.

David Terraso | newswise
Further information:
http://www.gatech.edu

Further reports about: Cell Embryonic Levine Molecular Singapore Stem embryonic stem

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>