Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme plays key role in cell fate

05.06.2008
The road to death or differentiation follows a similar course in embryonic stem cells, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Cell Stem Cell.

“Caspases, known as ‘killer enzymes,’ that are activated during programmed cell death, are also active in the initial phases of cell differentiation,” said Dr. Thomas Zwaka, assistant professor in the Stem Cells and Regenerative Medicine Center (STaR) at BCM.

Research into embryonic stem cells is basic to understanding differentiation, the process by which some of the earliest cells begin the process of becoming different tissues and organs. Scientists are eager to tap the potential of the pluripotent embryonic stem cells because they have the ability to become almost any kind of cell in the body. That is, however, just one of the possible fates they face. They are also capable of almost infinite self-renewal made possible by an autoregulatory loop including several key transcription factors (e.g., Oct4, Nanog). (Transcription factors bind to DNA to control the transfer of genetic information into RNA.)

The involvement of caspases in differentiation came as a surprise, said Zwaka. However, it makes a certain kind of sense.

... more about:
»Cell »Embryonic »Key »Stem »Zwaka »caspase »embryonic stem »enzyme »fate

“From a more philosophical point of view, programmed cell death (apoptosis) is a specialized form of differentiation,” said Zwaka. (Cells undergo apoptosis or programmed cell death for a variety of reasons – most of them related to keeping organisms or tissues healthy.)

In studies in his laboratory, he and his colleagues at BCM found an “overlap between the pathways that drive cell death and cell differentiation” in a group of enzymes called caspases.

“Caspases trigger differentiation,” he said. “If you remove specific caspases, stem cells have a differentiation defect. When we artificially increase caspase activity, the cells differentiated. When we increased the enzyme activity even more, the cell went into programmed cell death.”

In studying how caspases achieve this activity, he noted that the enzyme is a protease or molecular scissors that cleave or cut proteins at specific points. In particular, they found that caspase cleaves Nanog, one of the transcription factors key to maintaining the embryonic stem cells in their self-renewal state.

“This is a proof of concept study,” said Zwaka. “It shows a strong link between cell death and differentiation pathways. We hope this is a general concept that we can apply in other kinds of stem cells.”

The finding has implications for other kinds of studies. One is that manipulating programmed cell death pathways and caspase targets could help to revert a somatic or already differentiated cell into an embryonic stem cell-like fate. For instance manipulating Nanog at the caspase cleavage site might improve the effectiveness of this technique and enable elimination of the use of viruses, which can contaminate cell lines.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.cellstemcell.com/

Further reports about: Cell Embryonic Key Stem Zwaka caspase embryonic stem enzyme fate

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>