Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Wafer of Polyethylene

05.06.2008
Ultrathin polyethylene films made of nanocrystals

Layers of plastic, much thinner than a strand of hair—this type of ultrathin polymer film is of great interest to scientists and engineers. Applications include protective coatings, for example.

A research team led by Stefan Mecking at the University of Konstanz has now developed a new method to produce wafer-thin layers. As reported in the journal Angewandte Chemie, the scientists made their films from individual prefabricated nanocrystal building blocks.

The conventional method for the production of ultrathin polymer films (films with a thickness of less than 0.1 µm) begins with a dilute solution of the polymer in an organic solvent, which is applied to a surface. In order to break up the crystalline structure of the solid polymer to get it into solution in the first place, high temperatures are usually required. The ordered crystalline layer only forms once the solvent is removed or cooled.

... more about:
»Polymer »crystalline »produce

Mecking and his co-workers have taken a completely different approach that works at room temperature and without organic solvents. The polymer of choice was polyethylene (PE), a polymer with a simple chemical structure and a broad spectrum of technical applications ranging from films and packaging materials to technical components or implants. PE is physiologically harmless and environmentally friendly—but has been hard to produce in ultrathin films.

The catalytic polymerization of ethylene with nickel complexes produces aqueous dispersions of crystalline polymer particles. These are individual, separate single crystals consisting of crystalline lamella of about 25x6 nm surrounded by an amorphous (noncrystalline) layer with a thickness of 1 nm. Amorphous domains on the surface are a typical occurrence in polymer crystals. Droplets of this aqueous dispersion are applied to a glass slide and spun at 2000 revolutions per minute (spin coating). Excess liquid is spun away, leaving behind a wafer-thin uniform film with a thickness of 50 nm.

The success of this attractive production technique rests on the amorphous domains around the single crystals in combination with the tiny size of the crystals. Although the amorphous domains only comprise a tiny portion of the volume of the particles, they interact very strongly with each other, holding the individual particles solidly in the film.

Stefan Mecking | EurekAlert!
Further information:
http://www.uni-konstanz.de
http://www3.interscience.wiley.com/journal/26737/home/press/200821press.html

Further reports about: Polymer crystalline produce

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>