Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new molecular mechanism for colorectal cancer: a new target for cancer therapies

Scientists in Portugal just found a new molecular mechanism behind colorectal cancer in which a mutated and a normal, but over-expressed, gene cooperate and are both needed to create the disease.

The research, published in the journal Gastroenteroloy1, also reveals how a technique called RNA interference can – by inactivating both genes - kill, in just 48 hours, as much as 80% of cancer cells. These are extremely promising results if transferred into new therapies for humans against a disease that still is one of the most common cancers in the western world.

Colorectal cancer affects the colon, rectum and appendix and is not only the third most common form of cancer, but also the second cancer-related cause of death in the Western world, according to the World Health Organization. The disease kills about 655,000 people per year worldwide, with 16,000 only in the UK, even if it has a high cure rate if early detected and treated.

It is known that about 30 to 40 percent of colorectal cancer cases result from a mutated KRAS gene, which affects cell division. When this gene is mutated it becomes hyper-activated, leading to uncontrolled cell multiplication, which, together with resistance to death, are the hallmarks of all cancerous cells. And in fact, the capabilities of KRAS mutations to induce cancer depend on another molecule - Rac1 – that complements its effect on cell division by inhibiting cell death and further stimulating cell division. Together they create immortal and abnormally growing cells, the exact definition of cancer cells.

... more about:
»B-Raf »KRAS »Matos »Molecular »Mutation »RNA »RNAi »Rac1 »Rac1b »Seruca »V600 »colorectal »mutated »therapies »tumour

More recently, among colorectal cancers negative for the KRAS mutation, a related abnormality has been identified, this time on a gene called BRAF, which, like KRAS, is also involved in cell growth and division. When studied in laboratory, however, BRAF mutations were not enough by themselves to produce cancer, suggesting that a second event was necessary for malignant transformation. The fact that therapies targeting BRAF have a low success rate in these tumours , further supported the existence of a second event and highlighted the urgency to further investigate the mechanism behind BRAF-mutated cancers, which, after all, comprise as much as 10% of all colorectal cancers cases.

Paulo Matos, Raquel Seruca, Peter Jordan and colleagues at the Centre of Human Genetics in the National Health Institute Dr. Ricardo Jorge in Lisbon and the Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal have previously found abnormally high quantities of a variant of Rac1 - called Rac1b - among some colorectal cancers. This - together with the fact that Rac1 is crucial for K-Ras-induced tumours - led the researchers to hypothesise that maybe Rac1b was the (mysterious) partner of B-Raf V600 in colorectal tumours.

To test this possibility Matos, Seruca , Jordan and colleagues analysed cells from 61 different colorectal cancer patients, together with normal mucosa cells from 13 patients. Confirming their hypothesis a strong association between the most common Raf mutation - B-Raf V600 - and Rac1b was found, with 82% of B-Raf V600 positive tumours showing Rac1b over-expression. In contrast, K-Ras mutated tumours and normal mucosal tissue had almost no Rac1b.

The next question to Matos, Seruca , Jordan and colleagues was to see if the two molecules did in fact cooperate in the formation of the tumour, since B-Raf V600 was known to be incapable, by itself, of producing cancer. For this, the researchers inhibited the gene for B-Raf V600 or the one for Rac1b, or both at the same time, and analysed the resulting tumour cells.

Gene inhibition was done using a method called RNA interference (or RNAi). The first step during gene expression is to pass the information, contained in the gene (the piece of DNA) to be expressed, into a molecule of RNA called messenger RNA. The RNAi method consists in introducing into the cells a small double molecule of RNA with the same sequence of the messenger RNA corresponding to the gene we want to inactivate. Because double RNA molecules do not occur naturally the cell will destroy it, triggering too the destruction of the messenger RNA with the same sequence and effectively silencing the gene, as its expression is interrupted. The big advantage of this method is its specificity, since, contrary to other cancer treatments like radio- or even chemo-therapy, it will only result in the death of the target cells.

Matos, Seruca, Jordan and colleagues’ RNAi experiment revealed that when the genes for B-Raf V600 or Rac1b were inactivated there was a reduction or in cell viability and/or division but, most striking, was the result of their combined inactivation. In fact, combined “inhibition” of the two genes resulted in 80% of the colorectal cancer cells dying in the period of 48 hours. This confirmed that the two molecules functionally cooperate in the development of some K-Ras negative colorectal tumours and explains why B-Raf mutations alone are not sufficient to achieve cancer, while also suggesting a promising specific molecular target for therapy against this type of cancer. Supporting the specific importance of Rac1b in BRAF-mutated colorectal cancer, its inactivation on KRAS-mutated colorectal cancers had no effect on cells’ survival or division.

Matos, Seruca, Jordan and colleagues’ results are extremely promising as they reveal that the relatively simple and very specific (so with less secondary effects for the patient) technique of RNAi can, when targeting both B-Raf V600 and Rac1b, kill almost all the colorectal tumour. This, if translated into a therapy for humans could be the difference between patients’ life or death and, as such, prompts the urgent need for further clinic-oriented investigation. But, as Peter Jordan one of the leaders of the project emphasizes “It is important to remember though, that despite these novel findings, it is still most crucial to move forwards with cancer prevention through changes in diet and life style”

The discovery of a new molecule involved in the pathogenesis of this cancer also raises the question of its suitability as a marker in order to identify and follow closely those individuals with propensity for the disease since the disease has such a high cure rate if detected early. In fact, although screening is already done, at the moment this is only done in individuals from families with the hereditary form of colorectal cancer.

Finally, high quantities of Rac1b have already been detected in some breast cancers what, with the new results, raise the possibility that the molecule can have a role in this (and others?) epithelial cancer and, as such, also needs to be further investigated.

Piece researched and written by Catarina Amorim
1 Gastroenteroloy (2008) advanced only edition DOI: 10.1053/j.gastro.2008.05.052
“B-RafV600E cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival”
Authors of the original paper
Paulo Matos –
Peter Jordan -
Raquel Seruca -

Catarina Amorim | alfa
Further information:

Further reports about: B-Raf KRAS Matos Molecular Mutation RNA RNAi Rac1 Rac1b Seruca V600 colorectal mutated therapies tumour

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>