Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest fuel reduces climate changes

03.06.2008
Growing concentrations of greenhouse gases in the atmosphere primarily from CO2 emissions from the combustion of fossil fuels are impacting the climate on earth. Replacing fossil fuels with forest fuels is becoming more and more urgent. That would reduce the net emissions of CO2 and the effects on the climate. This is shown in a dissertation from Mid Sweden University.

Large-scale, long-distance transports of biofuels from central Sweden to central Europe may be a cost-effective and attractive way to reduce CO2 emissions. This is confirmed by comparative analyses of costs, primary energy use, and CO2 emissions performed for various forest fuel systems. The findings show that a system of lashed branches and tops from harvested forests evinces good cost-effectiveness. It also has a high potential to reduce the net emissions of CO2 per hectare of forest.

"A large number of systems were compared in terms of terrain, concentration of forest fuel, and transport distance. If the preconditions are changed, then the potential for the various forest fuel systems changes as well," says Lisa Eriksson at Mid Sweden University. These systems were compared on a local, national, and international scale.

A lashed system means that more biomass per hectare can be delivered to end users than with a pellet system. This is due to the consumption of biomass in the production of pellets. The amount of material gathered per hectare is a central factor. Extracting brush from thinning together with stumps, branches, and tops from harvesting yields a high potential to avoid fossil CO2 emissions per hectare of forest. The total amount of available forest fuel in Sweden has been estimated at roughly 66 TWh per year.

... more about:
»CO2 »Climate »emissions »hectare

Lisa Eriksson will publicly defend her thesis at the Department of Engineering, Physics, and Mathematics at Mid Sweden University, Östersund Campus. The subject is Eco-technology and Environmental Science and the title of the dissertation is Forest Fuel Systems-­Comparative Analyses in a Life Cycle Perspective.

Questions can be posed to:
Lisa Eriksson, phone: +46 (0)63 16 55 35. E-mail lisa.eriksson@miun.se
and Leif Gustavsson, phone: +46 (0)63 16 59 79 or cell phone: +46 (0)70 344 70

Bertil Born | idw
Further information:
http://www.vr.se
http://www.miun.se

Further reports about: CO2 Climate emissions hectare

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>