Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Image Single HIV Particle Being Born

28.05.2008
By using a specialized microscope that only illuminates the cell’s surface, scientists at Rockefeller University and the Aaron Diamond AIDS Research Center have become the first to see, in real time and in plain view, hundreds of thousands of molecules coming together in a living cell to form a single particle of the virus that has, in less than 25 years, claimed more than 25 million lives: HIV.

A mapmaker and a mathematician may seem like an unlikely duo, but together they worked out a way to measure longitude -- and kept millions of sailors from getting lost at sea. Now, another unlikely duo, a virologist and a biophysicist at Rockefeller University, is making history of their own.

By using a specialized microscope that only illuminates the cell’s surface, they have become the first to see, in real time and in plain view, hundreds of thousands of molecules coming together in a living cell to form a single particle of the virus that has, in less than 25 years, claimed more than 25 million lives: HIV.

This work, published in the May 25 advanced online issue of Nature, may not only prove useful in developing treatments for the millions around the globe still living with the lethal virus but the technique created to image its assembly may also change the way scientists think about and approach their own research.

... more about:
»Bieniasz »Gag »HIV »Molecules »Surface »illuminate »virion

“The use of this technique is almost unlimited,” says Nolwenn Jouvenet, a postdoc who spearheaded this project under the direction of HIV expert Paul Bieniasz and cellular biophysicist Sandy Simon, who has been developing the imaging technique since 1992. “Now that we can actually see a virus being born, it gives us the opportunity to answer previously unanswered questions, not only in virology but in biology in general.”

Unlike a classical microscope, which shines light through a whole cell, the technique called total internal reflection microscopy only illuminates the cell’s surface where HIV assembles. “The result is that you can see, in exquisite detail, only events at the cell surface. You never even illuminate anything inside of the cell so you can focus on what you are interested in seeing the moment it is happening,” says Simon, professor and head of the Laboratory of Cellular Biophysics.

When a beam of light passes through a piece of glass to a cell’s surface, the energy from the light propagates upward, illuminating the entire cell. But when that beam is brought to a steeper angle, the light’s energy reflects off the cell’s surface, illuminating only the events going on at its most outer membrane. By zeroing in at the cell’s surface, the team became the first to document the time it takes for each HIV particle, or virion, to assemble: five to six minutes. “At first, we had no idea whether it would take milliseconds or hours,” says Jouvenet. “We just didn’t know.”

“This is the first time anyone has seen a virus particle being born,” says Bieniasz, who is an associate professor and head of the Laboratory of Retrovirology at Rockefeller and a scientist at the Aaron Diamond AIDS Research Center. “Not just HIV,” he clarifies, “any virus.”

To prove that what they were watching was virus particles assembling at the surface (rather than an already assembled virion coming into their field of view from inside the cell), the group tagged a major viral protein, called the Gag protein, with molecules that fluoresce, but whose color would change as they packed closer together. Although many different components gather to form a single virion, the Gag protein is the only one necessary for assembly. It attaches to the inner face of the cell’s outer membrane and when enough Gag molecules flood an area, they coalesce in a way that spontaneously forms a sphere.

Simon, Bieniasz and Jouvenet found that the Gag molecules are recruited from the inside of the cell and travel to the cell’s surface. When enough Gag molecules get close and start bumping into each other, the cell’s outer membrane starts to bulge outward into a budding virion and then pinches off to form an individual, infectious particle. At this point, the researchers showed that the virion is a lone entity, no longer exchanging resources with the cell. By using tricks from optics and physiology, they were able to watch the steps of viral assembly, budding, and even scission off the cell surface. With such a view they can start to describe the entire lifeline in the birth of the virus.

“I think that you can begin to understand events on a different level if you actually watch them happen instead of inferring that they might occur using other techniques,” says Bieniasz. “This technique and this collaboration made that possible.”

This research was supported in part by the National Institutes of Health, the National Science Foundation and amFAR, the Foundation for AIDS Research.

Thania Benios | newswise
Further information:
http://www.rockefeller.edu

Further reports about: Bieniasz Gag HIV Molecules Surface illuminate virion

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>